Applying Sequence Alignment Algorithms to Data Compression Ali Yahya

Scientists create a living organism

By Clive Cookson, FT May 20, 2010 10:47 p.m. EDT

FINANCIAL TIMES

Genomics pioneer Craig Venter, pictured in 2008, said, "We have passed through a critical psychological barrier." (FT) -- Scientists have turned inanimate chemicals into a living organism in an experiment that raises profound questions about the essence of life.

Craig Venter, the U.S. genomics pioneer, announced on Thursday that scientists at his laboratories in Maryland and California had succeeded in their 15-year project to make the world's first "synthetic cells" -- bacteria called *Mycoplasma mycoides*.

STORY HIGHLIGHTS

- Synthetic research behaves and divides in lab dishes like natural bacteria
- Independent scientists and philosophers hail research as a landmark

"We have passed through a critical psychological barrier," Dr. Venter told the FT. "It has changed my own thinking, both scientifically and philosophically, about life, and how it works."

The bacteria's genes were all constructed in the laboratory "from four bottles of chemicals on a chemical synthesizer, starting with information on a computer " he said

Motivation

- Outlook on DNA Sequencing
 - From \$500,000 to...
 - \$50
 - From 3 months to...
 - < Ihr

Motivation

- Explosion of information
 - 750 Megabytes
 - $2_{bits} * 3 \times 10^{9}_{base pairs} = 6 \times 10^{9}_{bits}$
 - 100 million sequences and,
 99 billion base pairs in GenBank
 - Numbers will skyrocket as costs drop

Opportunity

- Inevitable Trends
 - Genetic engineering will increasingly become a computing problem
 - Storage and analysis of data will occur in a fully distributed manner

Fundamental Problem

Limitations of today's representation/analysis techniques

- The inability to efficiently represent, manipulate, and analyze statistically significant samples of biological data within reasonable hardware limitations.
- Primary limiting factors:
 - memory
 - bandwidth

Steps to a Solution

"Nature is a tinkerer, not an inventor" – François Jacob

- Evolution is inherently incremental
 - An organism's DNA is related to that of it's ancestors
 - Estimate: Only 0.05% of the genetic code of unrelated people differ

Approach

Approach

Straw Man Implementation

Dynamic Programming

ATCCGACGTCGG

G G and

ATCCGTCGG

		A	Т	С	С	G	Т	С	G	G
	0	0	0	0	0	0	0	0	0	0
A	0	1	1	1	1	1	1	1	1	1
Т	0	1	2	2	2	2	2	2	2	2
C	0	1	2	3	3	3	3	3	3	3
С	0	1	2	3	4	4	4	4	4	4
G	0	1	2	3	4	5	5	5	5	5
A	0	1	2	3	4	5	5	5	5	5
С	0	1	2	3	4	5	5	6	6	6
G	0	1	2	3	4	5	5	6	7	7
Т	0	1	2	3	4	5	6	6	7	7
С	0	1	2	3	4	5	6	7	7	7
G	0	1	2	3	4	5	6	6	8	8
G	0	1	2	3	4	5	6	6	8	9

Alignment

Α	т	С	С	G	Α	С	G	т	С	G	G
Α	т	С	С	G	_	_	_	т	С	G	G

Implementation

$$F(i, j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j), \\ F(i-1, j) - d, \\ F(i, j-1) - d. \end{cases}$$

[2] Durbin et al.

Implementation

ATCCGACGTCGG

and

ATCCGTCGG

		Α	Т	С	С	G	Т	С	G	G
	0	0	0	0	0	0	0	0	0	0
A	0	1	1	1	1	1	1	1	1	1
Т	0	1	2	2	2	2	2	2	2	2
С	0	1	2	3	3	3	3	3	3	3
С	0	1	2	3	4	4	4	4	4	4
G	0	1	2	3	4	5	5	5	5	5
A	0	1	2	3	4	5	5	5	5	5
С	0	1	2	3	4	5	5	6	6	6
G	0	1	2	3	4	5	5	6	7	7
Т	0	1	2	3	4	5	6	6	7	7
С	0	1	2	3	4	5	6	7	7	7
G	0	1	2	3	4	5	6	6	8	8
G	0	1	2	3	4	5	6	6	8	9

Valid Alignments

Α	т	С	С	G	Α	С	G	т	С	G	G
Α	т	_	С	_	_	С	G	Т	С	G	G
A	т	С	С	G	A	С	G	т	С	G	G
A	т	С	С	_	_	_	G	т	С	G	G
Α	т	С	С	G	A	С	G	т	С	G	G
Α	т	С			_	С	G	т	С	G	G

Implementation 2.0

- Objective: Cluster the occurrence of gaps
- Approach: Penalize more for opening gap, and less for subsequent gaps
- Solution:
 - Use three matrices instead of one
 - Maintain state across gaps to coalesce them into "gap segments"

Implementation 2.0

State Machine

Equations

[2] Durbin et al.

Sequence T	est Run 3.4	Organism	Region	Span					
Sequence A	Accession FJ919248 http://bit.ly/7GDXy	Human rotavirus A	outer capsid protein (VP4)	Bases 0 - 100					
	ATTTATAGACAACTTCTCACTAATTACTATTCGGTAGACTTGCATGACGAAATAGAACAGATTGGATCGGAGAAAA CTCAAAATGTGACGGTAAATCCAG								
	GGCTATAAAATGGCTTCGCTCATTT AGCAAATTGGATCAGAAAAAACTC	ATAGACAGCTTCTCACT	AATTCATATTCAGTAGA	TTTATATGATGAAATAG					
Sequence B	Accession EU839962 http://bit.ly/M5ibV	Human rotavirus G9P[8]	outer capsid protein (VP4)	Bases 0 - 100					
Percent compr sequence A	ression on sequence B given	41.00%	39.00%	5.13%					
Alignment									
A:GCATGACGAAATAGAACAGATTGGATCGGAGAAAACTCAAATGTGACGGTAAATCCAG									

Sequence 1	Test Run 3.1	Organism	Region	Span					
Sequence A	Accession AF304073 http://bit.ly/10deJe	Physeter catodon (Sperm Whale)	cytochrome b, mitochondrial protein	Bases 0 - 100					
	ATGACCAACATCCGAAAATCACACCCATTAATAAAAATCATTAACAATGCATTCATCGACCTCCCTACCCCATCAA ACATTTCCTCATGATGAAACTTCG								
Sequence B	ATGACCAACATCCGAAAAAACACACCCCATTGATAAAAATCGTCAACAACGCATTCATCGACCTCCCTACTCCATC ACATCTCCTCATGATGAAATTTCG								
	Accession U72040 http://bit.ly/iube4	Kogia breviceps (Pygmy Sperm Whale)	cytochrome b, mitochondrial protein	Bases 0 - 100					
Percent compr sequence A	ression on sequence B given	69.00%	69.00%	0.00%					
Alignment									
	A: ATGACCAACATCCGAAA-ATCACACCCATT-AATAAAAATCATTAACAAT B: ATGACCAACATCCGAAAAA-CACACCCATTGA-TAAAAATCGTCAACAAC								

... GCATTCATCGACCTCCCTAC-CCCATCAAACATT-TCCTCATGATGAAACTT-CG

... GCATTCATCGACCTCCCTACTC-CATCAAACA-TCTCCTCATGATGAAA-TTTCG

Sequence T	est Run 3.2	Organism	Region	Span					
Sequence A	Accession EF093041 http://bit.ly/NmVDT	Lagenorhynchus obliquidens (Pacific white-sided dolphin)	cytochrome b, mitochondrial protein	Bases 0 - 100					
	ATGACCAACATCCGAAAAAACACACCCCACTAATAAAAATCCTCAATGACGCATTCATCGACCTACCCACTCCATCTA ACATCTCCTCATGATGAAACTTTG								
	ATGACCAACATCCGAAAAAACACACC ACATCTCCTCATGATGAAACTTTG	САСТААТААААТТАТС	AATAACGCATTCATTGA	CCTACCCACTCCATCTA					
Sequence B	Accession AF084057 http://bit.ly/bmrCE	Pseudorca Crassidens (False Killer Whale)	cytochrome b, mitochondrial protein	Bases 0 - 100					
Percent compr sequence A	ression on sequence B given	87.00%	87.00%	0.00%					
Alignment									
A: ATGACCAACATCCGAAAAAACACACCCCACTAATAAAAATCCTCAATGA-CG B: ATGACCAACATCCGAAAAAACACACCCCACTAATAAAAATTATCAAT-AACG									
CATTCATT-GACCTACCCACTCCATCTAACATCTCCTCATGATGAAACTTTG									

Sequence T	est Run 3.3	Organism	Region	Span					
Sequence A	Accession EF093025 http://bit.ly/16E6VM	Lissodelphis Borealis (Northern Right Whale Dolphin)	cytochrome b, mitochondrial	Bases 0 - 100					
	ATGACCAACATCCGAAAAAACACACCCCACTAATAAAAATCCTCAATGACGCATTCATCGACCTACCCACTCCATCTA ACATCTCCTCATGATGAAACTTTG								
	ATGACCAACATCCGAAAAACACACC ACATCTCCTCATGATGAAACTTTG	САСТААТАААААТССТС	AATAACACATTCATCGA	CCTACCCACTCCATCTA					
Sequence B	Accession AY257155 http://bit.ly/fjF7g	Lagenorhynchus Obscurus (Dusky Dolphin)	cytochrome b, mitochondrial	Bases 0 - 100					
Percent compr sequence A	ession on sequence B given	92.00%	92.00%	0.00%					
Alignment									
A: ATGACCAACATCCGAAAAAACACACCCCACTAATAAAAATCCTCAATGAC B: ATGACCAACATCCGAAAAAACACACCACCCACTAATAAAAATCCTCAATAACA									
••• GCATTCATCGACCTACCCACTCCATCTAACATCTCCTCATGATGAAACTTTG ••• -CATTCATCGACCTACCCACTCCATCTAACATCTCCTCATGATGAAACTTTG									

Current Ambitions

- Considering applicability to distributed filesystems
 - LBFS, Mazieres. Summer project.
- Implement support of compression across *n* sequences rather than just two.
- Test on larger scale sequence sets and measure performance

References

- [1] Needleman, S., Wunsch C. A general method applicable to the search for similarities in the amino acid sequence of two proteins. 1970.
- [2] Durbin, R., Eddy, S., Krogh A., Mitchison G. *Biological Sequence Analysis*. Cambridge University Press, 1998.