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PRODUCT

e Leverage: Contribute by helping
others make an contribute.

e Joy: Do it for yourself.

e Integrity: Change the world in
accordance with your own values.
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TECHNOLOGY

e Leverage: Automation and
abstraction are awesome.

e Longterm: Encapsulation is essential.

o Live it.









REACTIVITY

When data changes, automatically update the
parts of the Ul that depends on it.



SYNC AND SIMULATION

The server simulates the client, and changes on
one are automatically sync’ed to the other.



UNKNOWNS

Formalizing the concept of “waiting on the server
to know what to do”.
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REACTIVITY

asana:

talk

Let’s take a look at search.

Talk to Dustin about kittens
Jack Stahl

’ Talk to Justin about world domination
Jack Stahl
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REACTIVITY

Search View

l S asana:

‘ Results View
- talk
Talk to Dustin about kittens
Jack Stahl
’ Talk to Justin about world domination
Jack Stahl
‘ Input View

‘ ‘ Result View
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REACTIVITY

‘ Base Results
‘ Input View \
!

Search
Index
(non-
reactive)

Filter Text

‘ Results Viewf*

‘ Search Active?

Task assignee ‘
Task name ‘

asana:

talk
Talk to Dustin about kittens
Jack Stahl
’ Talk to Justin about world domination
Jack Stahl

‘ Result View
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REACTIVITY

asana:

talk
Talk to Dustin about kittens
| Jack Stahl
I Talk to Justin about world domination
Jack Stahl
‘ Input View \

‘ ‘ Result View

Search Reactive Dependency:
Index Child may change in
(non- value, causing parent

reactive) to recompute

‘ value, prevent changes in
children from causing

recomputation of parent

Task assignee ‘

Filter Text Tecl PRl ‘

Reactive Boundary: No return
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REACTIVITY

TOO FEW
BOUNDARIES

e Performance: app is less
responsive.

e You lose focus or scroll
position or don’t handle
an event if an important
DOM node is
recomputed.

e Correctness problems, if
you start trying to re-
render less often or re-
render manually.

TOO MANY
BOUNDARIES
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REACTIVITY

TOO FEW
BOUNDARIES

e Performance: app is less
responsive.

e You lose focus or scroll
position or don’t handle
an event if an important
DOM node is
recomputed.

e Correctness problems, if
you start trying to re-
render less often or re-
render manually.

TOO MANY
BOUNDARIES

e Performance: views render
slowly initially.
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REACTIVITY

TOO FEW TOO MANY
BOUNDARIES BOUNDARIES

e Performance: app is less e Performance: views render
responsive. slowly initially.

e You lose focus or scroll e Debugging is near-
position or don’t handle impossible, because the
an event if an important dependency graph is too
DOM node is complicated.
recomputed.

e Correctness problems, if
you start trying to re-
render less often or re-
render manually.
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SYNC AND SIMULATION

Server




SYNC AND SIMULATION

Client Server

Initial Request

Simulates Ul
Sends all model state loaded

Renders Ul
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SYNC AND SIMULATION

Client

Initial Request

Server

Sends all model state loaded

Simulates Ul

Renders Ul

Input from User

Runs handler

Sends model state changes

Updates Ul
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SYNC AND SIMULATION

Client

Server
Initial Request
>
Simulates Ul
Sends all model state loaded
<
Renders Ul
Input from User
Runs handler Sends model state changes
>
Updates Ul
Sends diff in loaded model state from last sync | Simulates Ul
<
Updates Ul




SYNC AND SIMULATION

Client Server
Initial Request >
Sends all model state loaded >imulates Ul
<
Renders Ul
Input from User
Runs handlerl Sends model state changes
Updates Ul >
Sends diff in loaded model state from last sync | Simulates Ul
Updates Ul R
< Update from other client
P Sends diff in loaded model state from last sync | Simulates Ul
Updates Ul

\/ v
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SYNC AND SIMULATION

BENEFITS REQUIREMENTS

e One codebase. Data-
fetching code for a view
lives within that view.

e Eliminates tons of
serialization/AJAX code.
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SYNC AND SIMULATION

BENEFITS REQUIREMENTS

e One codebase. Data- e Short-circuiting for O(n)
fetching code for a view complex views.
lives within that view.
e Automated and/or explicit

e Eliminates tons of batching.
serialization/AJAX code.

e Huge class of tricky
situations abstracted into
one well understood
system.

44



SYNC AND SIMULATION

BENEFITS REQUIREMENTS

e One codebase. Data- e Short-circuiting for O(n)
fetching code for a view complex views.
lives within that view.
e Automated and/or explicit
e Eliminates tons of batching.
serialization/AJAX code.
e Memory-intensive stateful
e Huge class of tncky web servers and stateful

situations abstracted into load-balancing.
one well understood
system.

45






UNKNOWNS

What happens when you switch lists in Asana?
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UNKNOWNS

What happens when you switch lists in Asana?

= Bugs
~ Bu

~ N ~

list_navigation_view.js:

env.appSession().gridState().setCurrentList(new_list);
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UNKNOWNS

What happens when you switch lists in Asana?

- -
L4

wY~ ¥ ~

list_navigation_view.js:

env.appSession().gridState().setCurrentList(new_list);

grid_pane_view.js:

DIV(]
grid_pane.renderHeader(),
AsanaHelpers.renderWithinLoadingBoundary(grid _pane)

)
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UNKNOWNS

e Any reactive value that tries to load data that is
not there gets the value
UnknownValue.Loading
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UNKNOWNS

e Any reactive value that tries to load data that is
not there gets the value
UnknownValue.Loading

e Any reactive value that depends upon another
reactive value that is unknown becomes
unknown itself

e Use loading boundaries to stop the propagation
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UNKNOWNS

Any reactive value that tries to load data that is
not there gets the value
UnknownValue.Loading

Any reactive value that depends upon another
reactive value that is unknown becomes
unknown itself

Use loading boundaries to stop the propagation

Also: UnknownValue.AccessDenied
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UNKNOWNS

What happens when you hit an unknown in a handler?
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UNKNOWNS

What happens when you hit an unknown in a handler?
You crash!
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UNKNOWNS

What happens when you hit an unknown in a handler?
You crash!

How do you prevent this?

Add assertions that run in development that no handler touches
any data that wasn’t fetched by the view for that handler.
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UNKNOWNS

What happens when you hit an unknown in a handler?
You crash!

How do you prevent this?

Add assertions that run in development that no handler touches
any data that wasn’t fetched by the view for that handler.

OR:

Allow handlers to try to run themselves on the client, but run on
the server if they hit an unknown.
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</UNKNOWNS>



ONE MORE THING.

Steve Jobs.



http://www.youtube.com/watch?v=3LEXae1j6EY%23t=25m05s
http://www.youtube.com/watch?v=3LEXae1j6EY%23t=25m05s

QUESTIONS?

e What do you work on?
e What happened with Lunascript?
e How does Asana compare to your past jobs?

e How is Asana changing as an organization?
e What are your favorite other tech companies?

e When is feature X coming to Asana?

e What’s the difference between Luna and LiveNode?

e Are there open source equivalents to Luna?
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