
Stanford ACM
January 20, 2012

Jack Stahl
Kris Rasmussen

1

HI.

2

I’M JACK.
3

HE’S KRIS.
4

WE WORK @

5

WHY DO WE DO WHAT
WE DO?

6

IMPACT.

7

IMPACT.
Product

8

PRODUCT

9

PRODUCT

• Leverage: Contribute by helping
others make an contribute.

• Joy: Do it for yourself.

• Integrity: Change the world in
accordance with your own values.

10

PRODUCT

• Leverage: Contribute by helping
others make an contribute.

• Joy: Do it for yourself.

• Integrity: Change the world in
accordance with your own values.

11

PRODUCT

• Leverage: Contribute by helping
others make an contribute.

• Joy: Do it for yourself.

• Integrity: Change the world in
accordance with your own values.

12

IMPACT.
Technology

13

TECHNOLOGY

• Leverage: Automation and
abstraction are awesome.

• Longterm: Encapsulation is essential.

• Live it.

14

TECHNOLOGY

• Leverage: Automation and
abstraction are awesome.

• Longterm: Encapsulation is essential.

• Live it.

15

TECHNOLOGY

• Leverage: Automation and
abstraction are awesome.

• Longterm: Encapsulation is essential.

• Live it.

16

</FLUFF>

17

LUNA
This is how we do it.

18

REACTIVITY
When data changes, automatically update the

parts of the UI that depends on it.

19

SYNC AND SIMULATION
The server simulates the client, and changes on

one are automatically sync’ed to the other.

20

UNKNOWNS
Formalizing the concept of “waiting on the server

to know what to do”.

21

REACTIVITY

Inner Reactive Boundaries

Outer Reactive Boundaries

...plus a bunch
more, especially in

the grid

22

REACTIVITY

Let’s take a look at search.

23

REACTIVITY
Search View

Results View

Result ViewResult View
Input View

24

REACTIVITY
Search View

Filter Text

Results View

Search Active?

Base Results

Task name

Task assignee

Result ViewResult View
Input View

Search
Index
 (non-

reactive)

25

REACTIVITY
Search View

Filter Text

Results View

Search Active?

Limited Results

Latest Results

Base Results

Task name

Task assignee

Result ViewResult View

Reactive Dependency:
Child may change in
value, causing parent
to recompute

Reactive Boundary: No return
value, prevent changes in
children from causing
recomputation of parent

Input View

Search
Index
 (non-

reactive)

26

REACTIVITY
TOO FEW

BOUNDARIES
TOO MANY

BOUNDARIES

27

REACTIVITY

• Performance: app is less
responsive.

• You lose focus or scroll
position or don’t handle
an event if an important
DOM node is
recomputed.

• Correctness problems, if
you start trying to re-
render less often or re-
render manually.

TOO FEW
BOUNDARIES

TOO MANY
BOUNDARIES

28

REACTIVITY

• Performance: app is less
responsive.

• You lose focus or scroll
position or don’t handle
an event if an important
DOM node is
recomputed.

• Correctness problems, if
you start trying to re-
render less often or re-
render manually.

TOO FEW
BOUNDARIES

TOO MANY
BOUNDARIES

29

REACTIVITY

• Performance: app is less
responsive.

• You lose focus or scroll
position or don’t handle
an event if an important
DOM node is
recomputed.

• Correctness problems, if
you start trying to re-
render less often or re-
render manually.

TOO FEW
BOUNDARIES

TOO MANY
BOUNDARIES

30

REACTIVITY

• Performance: app is less
responsive.

• You lose focus or scroll
position or don’t handle
an event if an important
DOM node is
recomputed.

• Correctness problems, if
you start trying to re-
render less often or re-
render manually.

• Performance: views render
slowly initially.

• Debugging is near-
impossible, because the
dependency graph is too
complicated.

TOO FEW
BOUNDARIES

TOO MANY
BOUNDARIES

31

REACTIVITY

• Performance: app is less
responsive.

• You lose focus or scroll
position or don’t handle
an event if an important
DOM node is
recomputed.

• Correctness problems, if
you start trying to re-
render less often or re-
render manually.

• Performance: views render
slowly initially.

• Debugging is near-
impossible, because the
dependency graph is too
complicated.

TOO FEW
BOUNDARIES

TOO MANY
BOUNDARIES

32

</REACTIVITY>

33

SYNC AND SIMULATION
Client Server

34

SYNC AND SIMULATION

Simulates UI

Initial Request

Sends all model state loaded

Client Server

Renders UI

35

SYNC AND SIMULATION

Simulates UI

Initial Request

Sends all model state loaded

Input from User

Client Server

Updates UI

Sends model state changesRuns handler

Renders UI

36

SYNC AND SIMULATION

Simulates UI

Initial Request

Sends all model state loaded

Input from User

Client Server

Updates UI

Sends model state changesRuns handler

Simulates UI

Updates UI

Sends diff in loaded model state from last sync

Renders UI

37

SYNC AND SIMULATION

Simulates UI

Initial Request

Sends all model state loaded

Input from User

Client Server

Updates UI

Sends model state changesRuns handler

Simulates UI

Updates UI

Sends diff in loaded model state from last sync

Renders UI

Simulates UI

Update from other client

Sends diff in loaded model state from last sync

Updates UI

38

SYNC AND SIMULATION
BENEFITS REQUIREMENTS

39

SYNC AND SIMULATION

• One codebase. Data-
fetching code for a view
lives within that view.

• Eliminates tons of
serialization/AJAX code.

• Huge class of tricky
situations abstracted into
one well understood
system.

BENEFITS REQUIREMENTS

40

SYNC AND SIMULATION

• One codebase. Data-
fetching code for a view
lives within that view.

• Eliminates tons of
serialization/AJAX code.

• Huge class of tricky
situations abstracted into
one well understood
system.

BENEFITS REQUIREMENTS

41

SYNC AND SIMULATION

• One codebase. Data-
fetching code for a view
lives within that view.

• Eliminates tons of
serialization/AJAX code.

• Huge class of tricky
situations abstracted into
one well understood
system.

BENEFITS REQUIREMENTS

42

SYNC AND SIMULATION

• One codebase. Data-
fetching code for a view
lives within that view.

• Eliminates tons of
serialization/AJAX code.

• Huge class of tricky
situations abstracted into
one well understood
system.

• Short-circuiting for O(n)
complex views.

• Automated and/or explicit
batching.

• Memory-intensive stateful
web servers and stateful
load-balancing.

BENEFITS REQUIREMENTS

43

SYNC AND SIMULATION

• One codebase. Data-
fetching code for a view
lives within that view.

• Eliminates tons of
serialization/AJAX code.

• Huge class of tricky
situations abstracted into
one well understood
system.

BENEFITS REQUIREMENTS

• Short-circuiting for O(n)
complex views.

• Automated and/or explicit
batching.

• Memory-intensive stateful
web servers and stateful
load-balancing.

44

SYNC AND SIMULATION

• One codebase. Data-
fetching code for a view
lives within that view.

• Eliminates tons of
serialization/AJAX code.

• Huge class of tricky
situations abstracted into
one well understood
system.

BENEFITS REQUIREMENTS

• Short-circuiting for O(n)
complex views.

• Automated and/or explicit
batching.

• Memory-intensive stateful
web servers and stateful
load-balancing.

45

</SYNC>

46

UNKNOWNS
What happens when you switch lists in Asana?

47

UNKNOWNS
What happens when you switch lists in Asana?

env.appSession().gridState().setCurrentList(new_list);

list_navigation_view.js:

48

UNKNOWNS
What happens when you switch lists in Asana?

env.appSession().gridState().setCurrentList(new_list);

DIV([
 grid_pane.renderHeader(),
 AsanaHelpers.renderWithinLoadingBoundary(grid_pane)
])

grid_pane_view.js:

list_navigation_view.js:

49

UNKNOWNS

• Any reactive value that tries to load data that is
not there gets the value
UnknownValue.Loading

• Any reactive value that depends upon another
reactive value that is unknown becomes
unknown itself

• Use loading boundaries to stop the propagation

• Also: UnknownValue.AccessDenied

50

UNKNOWNS

• Any reactive value that tries to load data that is
not there gets the value
UnknownValue.Loading

• Any reactive value that depends upon another
reactive value that is unknown becomes
unknown itself

• Use loading boundaries to stop the propagation

• Also: UnknownValue.AccessDenied

51

UNKNOWNS

• Any reactive value that tries to load data that is
not there gets the value
UnknownValue.Loading

• Any reactive value that depends upon another
reactive value that is unknown becomes
unknown itself

• Use loading boundaries to stop the propagation

• Also: UnknownValue.AccessDenied

52

UNKNOWNS

• Any reactive value that tries to load data that is
not there gets the value
UnknownValue.Loading

• Any reactive value that depends upon another
reactive value that is unknown becomes
unknown itself

• Use loading boundaries to stop the propagation

• Also: UnknownValue.AccessDenied

53

UNKNOWNS
What happens when you hit an unknown in a handler?
You crash!

How do you prevent this?

Add assertions that run in development that no handler touches
any data that wasn’t fetched by the view for that handler.

OR:

Allow handlers to try to run themselves on the client, but run on
the server if they hit an unknown.

54

UNKNOWNS
What happens when you hit an unknown in a handler?
You crash!

How do you prevent this?

Add assertions that run in development that no handler touches
any data that wasn’t fetched by the view for that handler.

OR:

Allow handlers to try to run themselves on the client, but run on
the server if they hit an unknown.

55

UNKNOWNS
What happens when you hit an unknown in a handler?
You crash!

How do you prevent this?

Add assertions that run in development that no handler touches
any data that wasn’t fetched by the view for that handler.

OR:

Allow handlers to try to run themselves on the client, but run on
the server if they hit an unknown.

56

UNKNOWNS
What happens when you hit an unknown in a handler?
You crash!

How do you prevent this?

Add assertions that run in development that no handler touches
any data that wasn’t fetched by the view for that handler.

OR:

Allow handlers to try to run themselves on the client, but run on
the server if they hit an unknown.

57

</UNKNOWNS>

58

ONE MORE THING.
Steve Jobs.

59

http://www.youtube.com/watch?v=3LEXae1j6EY%23t=25m05s
http://www.youtube.com/watch?v=3LEXae1j6EY%23t=25m05s

QUESTIONS?
• What do you work on?

• How is Asana changing as an organization?

• What happened with Lunascript?

• What are your favorite other tech companies?

• When is feature X coming to Asana?

• What’s the difference between Luna and LiveNode?

• Are there open source equivalents to Luna?

• How does Asana compare to your past jobs?

60

