
General Game Playing
Sam Schreiber
(schreib@cs.stanford.edu)

Computers playing games?

Not hard to imagine.
IBM's Deep Blue beat the
World Chess Champion in
1997 (that's 13 years ago!) .
Simple approach: go
through every position in
the game, work backwards
to winning moves.
Chess is too big to do that.
Instead, get
good strategies and hard-
code them in.
Is that all there is?

Games that IBM's Deep Blue Can Play

1. Chess

Games that a GGP Program Can Play

1. Chess
2. Chinese Checkers
3. Checkers
4. Connect Four
5. Connect Five
...

Games that a GGP Program Can Play

...
5. Quarto
6. Pentago
7. Othello
8. Blocker
9. Tic-Tac-Toe
10. Counterstrike (Simplified)
11. Lunar Lander (Simplified)
12. Breakthrough
13. Knight-through
14. Tic-Tac-Chess
15. TTTCC4
16. Block World
17. Lights Out

18. Cephalopod
19. Cylinder Checkers
21. Nine Men's Morris
22. Finding a Knight's Tour
23. Adversarial Knight's Tour
24. Numeric Tic-Tac-Toe
25. Flipping Pancakes
26. Solving an Eight Puzzle
27. Solving a Sudoku Puzzle
28. Smallest Unique Number
29. Qyshinsu
30. Zhadu
31. Nim
...

Games that a GGP Program Can Play

...
94. Bidding Tic-Tac-Toe
95. Nine-Board Tic-Tac-Toe
96. Solving a Maze
97. Rock-Paper-Scissors
98. The Iterated Prisoner's Dilemma
99. Chess and Othello in Parallel

(And many more!)

Games that a GGP Program Can Play

Any game that is:

Finite
Unlike "chess on an infinite board"
Unlike Mario Kart

No Hidden Information
Unlike Poker

Deterministic
Unlike Snakes & Ladders

General Game Playing Basics

Game rules are encoded in a logic language (GDL).
Players are sent the rules of the game and have a few
minutes to strategize. They have never seen the game
before.
Then, play begins. Players submit moves every minute or
so, and receive updates about the state of the game.
Play continues until the game ends, and each player
receives a score between 0 and 100.
Simple to set up. Can support many different games.
Challenging to program an effective game player!

One Approach: Heuristics

Come up with a way to quantify how "good" a game state is.
Do this with heuristics: e.g. "more available moves for me is
better" or "fewer moves for my opponent is better".
Search as far into the game as time permits.

Try to pick moves
that will
eventually take
you to a state that
your heuristics
believe is good.

Another Way: Monte Carlo Simulation

Simulate millions of games in which both players play
randomly. For each of your possible moves, calculate the
average score that you get in these games when you make
that move. Pick the move with the highest average score!

Fancier versions
of this don't just
play randomly.
Surprisingly, this
approach works
really well on
many games.
(like Go!)

Out There in the Field Today
Annual General Game Playing Competitions at AAAI.

Cluneplayer won in 2005 (a heuristic-based player)
Fluxplayer won in 2006 (a heuristic-based player)
Cadiaplayer won in 2007 (a simulation-based player)
Cadiaplayer won in 2008 (a simulation-based player)
Ary won in 2009 (a simulation-based player)

My player, TurboTurtle , is also simulation-based.

 Unclear which approach will win out in the future!
 Each has advantages, disadvantages.

Looks fun? Get involved!

There are many ways to get involved:

Take CS 227b with Mike Genesereth!
Check out games.stanford.edu
Write a player and compete on the public
round-robin TU Dresden GGP server.
Talk with me for more details.

Questions?

