
Parallelism,	 GPU	 Internals,	 CUDA	

•  Why is Parallel Programming Important
•  Kinds of Parallelism
•  SIMD – Parallel Programming Paradigm
•  GPU Internals
•  CUDA

Why is parallel programming important?

Dateline: 1990
My program must run 2X faster.
I can:
• Work hard for several months – Assuming my program is already well-tuned
• Wait 18 months and buy a new computer

Dateline: 2010
My program must run 2X faster.
I can:
• Do nothing. My program may run slower.
• Work hard for several months.
• Or, I can rewrite my program in parallel.

 • Transistor density is still increasing
 – More parallel units on a chip
 – But speed of the units no longer increasing

1 Processor can have

Multiple cores, each can have

 Multiple ALUs, each run

 One Thread at one time, each runs

 One instruction at one time.

Parallelism vs. Concurrency

How will rewriting program in parallel help make
program faster?

1. Power limits performance
– Cooling ability limits power density
– Determines battery life (mobile phone)
– Running cost and computing capacity of datacenter (Google)
⇒ Power limits performance i.e. speed of units/cores on processor,

 hence parallel execution on multiple cores make natural sense.

2. Smaller is faster ⇔ smaller is lower power
– Computation is cheaper than memory access
– Small caches have lower access times than large caches
– Cache access is faster than DRAM access
⇒ So it is better to have multiple small processors that execute multiple

 small programs in parallel than a large processor that executes one
 large program sequentially.

Kinds of Parallelism?

1. Data Parallelism (loop level parallelism) = SIMD
 - focuses on distributing the data across different ALUs executing in parallel.

2. Task Parallelism (function/control parallelism)
 - focuses on distributing execution processes (threads) across different cores
 executing in parallel.
 - achieved when each processor core executes a different thread on the same or
 different data.
 - The threads may execute the same or different code/instruction.

And lets say you have the following piece of code ->
for (i = 0 to 7)

 A[i] = A[i] + 1;
“A[i] = A[i] + 1” is one instruction that needs to run on 8 pieces of data-

A[0] = A[0] + 1;
A[1] = A[1] + 1;
A[2] = A[2] + 1;
A[3] = A[3] + 1;
A[4] = A[4] + 1;
A[5] = A[5] + 1;
A[6] = A[6] + 1;
A[7] = A[7] + 1;

On a SIMD platform (e.g. GPU), 1 processor-core will contain 8 ALUs that can run
1 thread each, and hence execute all 8 statements in parallel in one time step.

SIMD – Single Instruction Multiple Data

Say you have an array of length N ->

0 1 2 3 4 5 6 7

GPU	 Internals	

CUDA	

