Parallelism, GPU Internals, CUDA

* Why is Parallel Programming Important
* Kinds of Parallelism

* SIMD — Parallel Programming Paradigm
* GPU Internals

« CUDA

Intel Microprocessor Trends

10,000,000

1.000.000

Montecito

100,000

10.000

1,000

100

10

0

= Transistors (000)

e Clock Speed (MHZ)
& Power (W)

@ Perf/Clock (ILP)

| |

1270 1975

CS315A Lecture 1

2000

2005

2010

Transistors

GHz

— Power

Why is parallel programming important?

Dateline: 1990

My program must run 2X faster.

| can:

« Work hard for several months — Assuming my program is already well-tuned
« Wait 18 months and buy a new computer

Dateline: 2010
My program must run 2X faster.
| can:
* Do nothing. My program may run slower.
« Work hard for several months.
* Or, | can rewrite my program in parallel.
* Transistor density is still increasing
— More parallel units on a chip
— But speed of the units no longer increasing

1 Processor can have
Multiple cores, each can have
Multiple ALUs, each run
One Thread at one time, each runs

One instruction at one time.

Parallelism vs. Concurrency

How will rewriting program in parallel help make
program faster?

1. Power limits performance

— Cooling ability limits power density

— Determines battery life (mobile phone)

— Running cost and computing capacity of datacenter (Google)

= Power limits performance i.e. speed of units/cores on processor,
hence parallel execution on multiple cores make natural sense.

2. Smaller is faster & smaller is lower power

— Computation is cheaper than memory access

— Small caches have lower access times than large caches

— Cache access is faster than DRAM access

= So it is better to have multiple small processors that execute multiple
small programs in parallel than a large processor that executes one

large program sequentially.

Kinds of Parallelism?

1. Data Parallelism (loop level parallelism) = SIMD
- focuses on distributing the data across different ALUs executing in parallel.

2. Task Parallelism (function/control parallelism)
- focuses on distributing execution processes (threads) across different cores
executing in parallel.
- achieved when each processor core executes a different thread on the same or
different data.
- The threads may execute the same or different code/instruction.

SIMD - Single Instruction Multiple Data
Say you have an array of length N ->

J J J J J J J

01 2 3 4 56 7

And lets say you have the following piece of code ->
for(i=0to7)
A[i] = A[i] + 1;
“A[i] = A[i] + 17 is one instruction that needs to run on 8 pieces of data-

A[0] = A[0] + 1:
A[1] = A[1] + 1:
A[2] = A[2] + 1:
A[3] = A[3] + 1:
A[4] = A[4] + 1:
A[5] = A[5] + 1:
A[6] = A[6] + 1:
A[7] = A[7] + 1:

On a SIMD platform (e.g. GPU), 1 processor-core will contain 8 ALUs that can run
1 thread each, and hence execute all 8 statements in parallel in one time step.

GPU Internals

CPU-"style” cores

Slimming down

ALU

(Execute)

i il

Idea #1:

Remove components that
help a single instruction
stream run fast

Two cores (two threads in parallel)

Thread 1 Thread 2

cdiffuseShader>:

> o, v - L]

u v o[¢

» v] r
r

Four cores

(four threads in parallel)

- -
' [
! !
e O
- -
! 1

.4-
.4-

Sixteen cores (sixteen threads in parallel)

?PPY
66 ad Q
PPPP
OO
PPPY
baad
PPPY g
566 a

16 cores = 16 simultaneous instruction streams

Instruction stream sharing

Q Q O O
$! 3+ 3 3
$ 4+ 3 3
O -
Q Q O O
$! 3+ 3 3
'8 3+ 3 3
| 0O
O O o O
' 2 3 3
$I 3+ 3 3
e @
Q Q O O
'8 3 3
$i 3 3 3
O

But... many threads should
be able to share an instruction

stream!

<diffuseShader>:
sample re, v4, te, so

mul r3,
madd r3,
madd r3,
clmp r3,
mul 00,
mul o1,
mul o2,
mov 03,

ve,
vl,
v2,
r3,
re,
ri,
r2,

cbe[o]

cbo[1], r3
cbo[2], r3
1(e.9), 1(1.9)
r3

r3

r3

1(1.0)

Recall: simple processing core

Add ALUs

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

SIMD or Vector
processing

128 ALUs

16 simultaneous instruction streams

128 threads in parallel

1

I

1

I

S mm B s
T8 BE B8 W8

I

1

I

I

9253 G832 g8 838
B BR 9 B

I

4

4

A

I

A

4

4

4

4

G880 @8s0 8080 seso
a3 98 58 BB

5

1

I

1

I

I

I
G88c S8dd G06C 68 4 . oo

17

I

Four large contexts

—

(low latency hiding ability)

NVIDIA GeForce GTX 285

* Generic speak:

- 30 cores

- 8 SIMD functional units per core

- 768 threads/core = 23, 040 threads/chip

* NVIDIA-speak:
- 240 stream processors
- "SIMT execution”

Summary: three key ideas

1. Use many "slimmed down cores” to run in
parallel

2. Pack cores full of ALUs (by sharing
instruction stream across groups of threads)

- Option 1: Explicit SIMD vector instructions
- Option 2: Implicit sharing managed by hardware

3. Avoid latency stalls by interleaving execution
of many groups of threads

- When one group stalls, work on another group

CUDA

CUDA Kernels

+ Kernels are executed by an array of threads

+ All threads run the same code (SPMD)

- Single program multiple data
threadID

Lol TzTsTaTsTe] 7]

+ Each thread has an ID RN
- Compute memory addresses .))))))
- Make branch decisions £loat x = iaput[thresdId];

float y = func(x);
output[threadlID)] = y;

\\\\\\\\

)
vd»’.‘u.ti

Grids, Blocks and Threads

+ Each kernel runs as grid of
threads on whole device

+ Grids are composed of blocks
- Block ID: 1D or 2D —
- Blocks are executed in any order

+ Blocks are composed of threads
- Thread ID: 1D, 2D, or 3D
- Max 512 threads per block

CUDA Memory Model

* Global memory

- Data transfer between host
and device

- Contents visible to all threads
- Long latency access

+ Shared Memory

- Only accessible to threads

Block (1, 0)

within a block
+« Atomics
. Host
« Barriers Memory
- user managed

* Not a cache

Canonical CUDA Program

Ok wh =

Allocate device global memory
Transfer input data from host to device
Invoke kernel (s)

Transfer output data from device to host
Deallocate device global memory

Matrix Multiplication Example

* P=M*N of size WIDTH x WIDTH
MM(float™ M, float* N, float™ P, int Width)
{
for (int i = 0; i < Width; ++i)
for (int j = 0; j < Width; ++j) {
double sum = O;
for (int k = 0; k < Width; ++k) {
double a = M[i ™ width + k];
double b = N[k * width + j§
sum+=a™ b;
}
P[i * Width + j] = sum;
}

> -

Allocate and Transfer Data

void MatrixMulOnDevice(float* M, float™ N, fleat™ P, int Width)
{

int size = Width * Width * sizeof(float);

float™ Md, Nd, Pd;

// 1. Allecate M, N, P to device glebal memory
cudaMalloc(&Md, size);
cudaMalloc(&Nd, size);
cudaMalloc(&Pd, size);

// 2. Load M and N
cudaMemcpy(Md, M, size, cudaMemcpyHost ToDevice);
cudaMemcpy(Nd, N, size, cudaMemcpyHest ToDevice);

Matrix Multiply Kernel

_global___ void MatrixMulKernel(float™ Md, float™ Nd, fleat™ Pd, int Width)

{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y:
// Calculate the column index of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)

Pvalue += Md[Row™Width+k] * Nd[k*Width+Col]

Pd[Row*Width+Col] = Pvalue;
}

bx

Kernel Invocation, Data Transfer,
Deallocation

// Setup the execution configuration
dim3 dimGrid(Width / TILE_WIDTH, Width / TILE_WIDTH);

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH)

// 3. Launch the device computation threads!
MatrixMulKernek«dimb&rid, dimBlock»>»>(Md, Nd, Pd, Width);

// 4. Read P from the device
cudaMemcpy(P, Pd, size, cudaMemcpyDevice ToHost);

// 5. Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

