MS\&E 246: Game Theory with Engineering Applications

Lecture 1
Ramesh J ohari

Outline

- Administrative stuff
- Course introduction
- A game

Administrative details

- My e-mail: ramesh.j ohari@stanford. edu
- Course assistant:

Christina Aperjis, caperjis@stanford.edu

- Website: eeclass. stanford. edu/ msande246 All students must sign up there, and keep up with announcements

Administrative details

- 6-7 problem sets

Assigned Thursday, due following
Thursday in box outside Terman 319
No late assignments accepted

- Midterm to be held February 8 (in class)

Big picture

Economics and engineering are tied together more than ever

Game theory provides a set of tools we can use to study problems at this interface

Motivating examples

- Electronic marketplaces
- eBay auctions:

Fixed termination time

- Amazon auctions

Terminate after 10 minutes of inactivity

Which yields higher revenue?

Motivating examples

- Internet resource allocation
- TCP: regulates flow of packets through the Internet
- Malicious users can grab much more than "fair" share
- How do we design "fair", "efficient" allocation protocols that are robust to gaming?

Motivating examples

- Electricity markets
- Electricity can't be stored, and must be reliable
- Market failure is disastrous (e.g., California in 2000)
- How do we design efficient, sustainable markets?

Internet provider competition

- Internet $=1000$ s of ASes (autonomous systems)
- Bilateral contracts between ASes:

- Transit vs. peer contracts

ISP contracts

- Transit vs. peer contracts
- Transit:

If A pays B, then
A agrees to carry all traffic to/ from B

- Peer:

A and B are of similar size, and agree to exchange traffic terminating in each other's network

Problems in the ISP industry

- In 2002, seven dominant players:
- Sprint
- AT\&T
- MCI/ UUnet
- Qwest
- C\&W
- Level3
- Genuity

Problems in the ISP industry

- In 2002, seven dominant players:
- Sprint
- AT\&T
- MCI/ UUnet
- Qwest
- C\&W
- Level3
- Genuity
(subsidized by wireless)
ACQUIRED (SBC)
ACQUIRED (Verizon)
\$18B debt
R.I.P. (in U.S.)
(merged w/ Genuity)
ACQUIRED (Level3)

Econ 101, pt. 1: war of attrition

- Pricing below marginal cost
\Rightarrow War of attrition (repeated game):

Lose money now in hopes of being last firm standing

Econ 101, pt. 2: Bertrand

- Example:

- If $p_{1}<p_{2}$, then ISP 2's profit $=$ zero

The future

- Econ 101 captures the essence:
- cutthroat pricing
- massive financial losses
- "Iast firm standing" mentality
- Question:

Is a regulated monopoly the only endgame?

Engineering

What is the problem in Bertrand example?
ISP 2 receives no credit for the value generated.

Current protocols don't expedite transmission of value information.
\Rightarrow How do we build economically robust, informative protocols?

This course

We will develop the basics of noncooperative game theory...
.. but with an eye towards connection with engineering applications.

Our first game

Two players each have a budget of $\$ 4.00$.
I have \$8. 00.
Each player i puts $\$ w_{i}$ in an envelope.
I give player i a fraction $w_{i} /\left(w_{1}+w_{2}\right)$ of the $\$ 8.00$ that I have.

Whatever they did not put in the envelope, they keep for themselves.

Reasoning about the game

- What is the "best" a player can do?
- What is the best they can do together?
- Should they ever bid zero?
- Is there any bid a player should never make?
- What is the minimum a player can guarantee himself or herself?
- What will happen when the game is played?

Reasoning about the game

Player 1's payoff $=8 \times w_{1} /\left(w_{1}+w_{2}\right)+4-w_{1}$

		Player 2's bid				
		\$0	\$1	\$2	\$3	\$4
믈	\$0	\$4.00	\$4.00	\$4.00	\$4.00	\$4.00
$\stackrel{\sim}{\sim}$	\$1	\$11.00	\$7.00	\$5.67	\$5.00	\$4.60
$\stackrel{\overline{0}}{\square}$	\$2	\$10.00	\$7.33	\$6.00	\$5.20	\$4.67
진	\$3	\$9.00	\$7.00	\$5.80	\$5.00	\$4.43
	\$4	\$8.00	\$6.40	\$5.33	\$4.57	\$4.00

Reasoning about the game

Note that bidding $\$ 2$ is always better than bidding \$0, \$3, or \$4:

Player 2's bid

Reasoning about the game

If we anticipate player 2 will not bid $\$ 0$, \$3, or \$4...

Player 2's bid

		\$p	\$1	\$2	\$3	\$4
-	+0	\$4.0	\$4.00	.00	94.0	4
$\stackrel{\sim}{-1}$	\$1	\$11.0p	\$7.00	\$5.67	\$5.0]	\$4.65
$\stackrel{\bar{\omega}}{ }$	\$2	\$10.0	\$7.33	\$6.00	\$5.2	\$4.67
줌	\$2	+00]	\$7.00	\$5.00	\$5.0	
	+		\$0.40			

Reasoning about the game

..then we should always bid $\$ 2 . .$.

Reasoning about the game

.. and so should player 2.

Reasoning about the game

- Does this way of reasoning about the game make sense?
- Thought experiments: What if the budgets are different? What if the size of the common pool is different?

MS\&E 246: Lecture 2 The basics

Ramesh J ohari
J anuary 16, 2007

Course overview

(Mainly) noncooperative game theory.

Noncooperative:
Focus on individual players' incentives
(note these might lead to cooperation!)
Game theory:
Analyzing the behavior of rational, self interested players

What's in a game?

1. Players: Who?
2. Strategies: What actions are available?
3. Rules: How? When? What do they know?
4. Outcomes: What results?
5. Payoffs:

How do players evaluate outcomes of the game?

Example: Chess

1. Players: Chess masters
2. Strategies: Moving a piece
3. Rules: How pieces are moved/ removed
4. Outcomes: Victory or defeat
5. Payoffs:

Thrill of victory,
agony of defeat

Rationality

Players are rational and self-interested:

They will al ways choose actions that maximize their payoffs, given everything they know.

Static games

We first focus on static games.
(one-shot games, simultaneous-move games)

For any such game, the rules say:
All players must simultaneously pick a strategy.
This immediately determines an outcome, and hence their payoff.

Knowledge

- All players know the structure of the game:
players, strategies, rules, outcomes, payoffs

Common knowledge

- All players know the structure of the game
- All players know all players know the structure
- All players know all players know all players know the structure
and so on... \Rightarrow
We say: the structure is common knowledge.
This is called complete information.

PART I: Static games of complete information

Representation

- N : \#of players
- S_{n} : strategies available to player n
- Outcomes:

Composite strategy vectors

- $\Pi_{n}\left(s_{1}, \ldots, s_{N}\right)$:
payoff to player n when
player i plays strategy $s_{i}, i=1, \ldots, N$

Example: A routing game

MCl and AT\&T:
A Chicago customer of MCl wants to send 1 MB to an SF customer of AT\&T.
A LA customer of AT\&T wants to send 1 MB to an NY customer of MCl.

Providers minimize their own cost.
Key: MCl and AT\&T only exchange traffic ("peer") in NY and SF.

Example: A routing game

Costs (per MB): Long links = 2; Short links = 1

Example: A routing game

Players: MCl and AT\&T ($N=2$)
Strategies: Choice of traffic exit $S_{1}=S_{2}=\{$ nearest exit, furthest exit $\}$ Payoffs:
Both choose furthest exit: $\Pi_{\text {MCI }}=\Pi_{\text {AT\&T }}=-2$ Both choose nearest exit: $\Pi_{\mathrm{McI}}=\Pi_{\text {AT\&T }}=-4$ MCl chooses near, AT\&T chooses far:

$$
\Pi_{\mathrm{MCI}}=-1, \Pi_{\mathrm{AT} \& \mathrm{~T}}=-5
$$

Example: A routing game

Games with $N=2, S_{n}$ finite for each n are called bimatrix games.

Example: Matching pennies

This is a zero-sum matrix game.

Dominance

$s_{n} \in S_{n}$ is a (weakly) domi nated strategy if there exists $s_{n}{ }^{*} \in S_{n}$ such that $\Pi_{n}\left(s_{n}{ }^{*}, \mathbf{s}_{-n}\right) \geq \Pi_{n}\left(s_{n}, \mathbf{s}_{-n}\right)$,
for any choice of s_{-n}, with
strict ineq. for at least one choice of s_{-n}
If the ineq. is always strict, then s_{n} is a strictly domi nated strategy.

Dominance

$s_{n}{ }^{*} \in S_{n}$ is a weak dominant strategy if
$s_{n} *$ weakly dominates all other $s_{n} \in S_{n}$.
$s_{n}{ }^{*} \in S_{n}$ is a strict dominant strategy if $s_{n}{ }^{*}$ strictly dominates all other $s_{n} \in S_{n}$.
(Note: dominant strategies are unique!)

Dominant strategy equilibrium

$\mathbf{s} \in S_{1} \times \cdots \times S_{N}$ is a
strict (or weak)
dominant strategy equilibrium
if s_{n} is a strict (or weak) dominant strategy for each n.

Back to the routing game

Nearest exit is strict dominant strategy for MCl.

Back to the routing game

Nearest exit is strict dominant strategy for AT\&T.

Back to the routing game

Both choosing nearest exit is a strict dominant strategy equilibrium.

Example: Second price auction

- N bidders
- Strategies: $S_{n}=[0, \infty) ; s_{n}="$ bid"
- Rules \& outcomes:

High bidder wins, pays second highest bid

- Payoffs:
- Zero if a player loses
- If player n wins and pays t_{n}, then

$$
\Pi_{n}=v_{n}-t_{n}
$$

- v_{n} : valuation of player n

Example: Second price auction

- Claim: Truthful bidding $\left(s_{n}=v_{n}\right)$ is a weak dominant strategy for player n.
- Proof:

If player n considers a bid $>v_{n}$:
Payoff may be lower when n wins, and the same (zero) when n loses

Example: Second price auction

- Claim: Truthful bidding ($s_{n}=v_{n}$) is a weak dominant strategy for player n.
- Proof:

If player n considers a bid $<v_{n}$:
Payoff will be same when n wins, but may be worse when n loses

Example: Second price auction

- We conclude:

Truthful bidding is a (weak) dominant strategy equilibrium for the second price auction.

Example: Matching pennies

No dominant/ dominated strategy exists!
Moral: Dominant strategy eq. may not exist.

Iterated strict dominance

Given a game:

- Construct a new game by removing a strictly dominated strategy from one of the strategy spaces S_{n}.
- Repeat this procedure until no strictly dominated strategies remain.

If this results in a unique strategy profile, the game is called dominance solvable.

Iterated strict dominance

- Note that the bidding game in Lecture 1 was dominance solvable.
- There the unique resulting strategy profile was $(6,6)$.

Example

	Player 2		
	Left	Middle	Right
Player 1 Up	$(1,0)$	$(1,2)$	$(0,1)$
Down	$(0,3)$	$(0,1)$	$(2,0)$

Example

	Player 2		
	Left	Middle	Right
Player 1	Up	$(1,0)$	$(1,2)$
Down	$(0,3)$	$(0,1)$	

Example

Example

Thus the game is dominance solvable.

Example: Cournot duopoly

- Two firms ($N=2$)
- Cournot competition: each firm chooses a quantity $s_{n} \geq 0$
- Cost of producing $s_{n}: c s_{n}$
- Demand curve: Price $=P\left(s_{1}+s_{2}\right)=a-b\left(s_{1}+s_{2}\right)$
- Payoffs:

Profit $=\Pi_{n}\left(s_{1}, s_{2}\right)=P\left(s_{1}+s_{2}\right) s_{n}-c s_{n}$

Example: Cournot duopoly

- Claim:

The Cournot duopoly is dominance solvable.

- Proof technique:

First construct the best response for each player.

Best response

Best response set for player n to \mathbf{s}_{-n} :

$$
R_{n}\left(\mathbf{s}_{-n}\right)=\arg \max _{s_{n} \in S_{n}} \Pi_{n}\left(s_{n}, \mathbf{s}_{-n}\right)
$$

[Note: $\arg \max _{x \in X} f(x)$ is the
set of x that maximize $f(x)$]

Example: Cournot duopoly

Calculating the best response given s_{-n} :

$$
\max _{s_{n} \geq 0}\left[\left(a-b s_{n}-b s_{-n}\right) s_{n}-c s_{n}\right] \Longrightarrow
$$

Differentiate and solve:

$$
a-c-b s_{-n}-2 b s_{n}=0
$$

So:

$$
R_{n}\left(s_{-n}\right)=\left[\frac{a-c}{2 b}-\frac{s_{-n}}{2}\right]^{+}
$$

Example: Cournot duopoly

For simplicity, let $t=(a-c) / b$

Example: Cournot duopoly

Step 1: Remove strictly dominated s_{1}.

Example: Cournot duopoly

Step 2: Remove strictly dominated s_{2}.

Example: Cournot duopoly

Step 2: Remove strictly dominated s_{2}.

Example: Cournot duopoly

Step 3: Remove strictly dominated s_{1}.

Example: Cournot duopoly

Step 4: Remove strictly dominated s_{2}.

Example: Cournot duopoly

The process converges to the intersection point: $s_{1}=t / 3, s_{2}=t / 3$

Step \#	Undominated s_{1}
1	$[0, t / 2]$
3	$[t / 4,3 t / 8]$
5	$[5 t / 16,11 t / 32]$
7	$[21 t / 64,43 t / 128]$

Example: Cournot duopoly

Lower bound $=$

$$
t \sum_{k=1}^{\infty}(1 / 2)^{2 k}=t / 3
$$

Upper bound $=$

$$
t\left(1-\sum_{k=1}^{\infty}(1 / 2)^{2 k-1}\right)=t / 3
$$

Dominance solvability: comments

- Order of elimination doesn't matter
- J ust as most games don't have DSE, most games are not dominance solvable

Rationalizable strategies

Given a game:

- For each player n, remove strategies from each S_{n} that are not best responses for any choice of other players' strategies.
- Repeat this procedure.

Strategies that survive this process are called rationalizable strategies.

Rationalizable strategies

In a two player game, a strategy s_{1} is rationalizable for player 1 if there exists a chain of justification

$$
s_{1} \rightarrow s_{2} \rightarrow s_{1}^{\prime} \rightarrow s_{2}^{\prime} \rightarrow \ldots \rightarrow s_{1}
$$

where each is a best response to the one before.

Rationalizable strategies

- If s_{n} is rationalizable, it also survives iterated strict dominance. (Why?)
\Rightarrow For a dominance solvable game, there is a unique rationalizable strategy, and it is the one given by
iterated strict dominance.

Rationalizability: example

Note that M is not rationalizable, but it survives iterated strict dominance.

			Player	
		L	M	R
Player 1	T	$(1,0)$	$(1,1)$	$(1,5)$
	B	$(1,5)$	$(1,1)$	$(1,0)$

Rationalizable strategies

Note for Iater:

When " mixed" strategies are allowed, rationalizability $=$ iterated strict dominance
for two player games.

MS\&E 246: Lecture 3
 Pure strategy Nash equilibrium

Ramesh J ohari
J anuary 16, 2007

Outline

- Best response and pure strategy Nash equilibrium
- Relation to other equilibrium notions
- Examples
- Bertrand competition

Best response set

Best response set for player n to \mathbf{s}_{-n} :

$$
R_{n}\left(\mathbf{s}_{-n}\right)=\arg \max _{s_{n} \in S_{n}} \Pi_{n}\left(s_{n}, \mathbf{s}_{-n}\right)
$$

[Note: $\arg \max _{x \in X} f(x)$ is the
set of x that maximize $f(x)$]

Nash equilibrium

Given: N-player game
A vector $\mathrm{s}=\left(s_{1}, \ldots, s_{\mathrm{N}}\right)$ is a (pure strategy)
Nash equilibrium if:
$s_{i} \in R_{i}\left(\mathbf{s}_{-i}\right)$
for all players i.

Each individual plays a best response to the others.

Nash equilibrium

Pure strategy Nash equilibrium is robust to unilateral deviations

One of the hardest questions in game theory:

How do players know to play a Nash equilibrium?

Example: Prisoner's dilemma

Recall the routing game:

	AT\&T	
	near	far
near	$(-4,-4)$	$(-1,-5)$
far	$(-5,-1)$	$(-2,-2)$

Example: Prisoner's dilemma

Here (near, near) is the unique (pure strategy) NE:

	AT\&T	
	near	far
near	$(-4,-4)$	$(-1,-5)$
far	$(-5,-1)$	$(-2,-2)$

Summary of relationships

Given a game:

- Any DSE also survives ISD, and is a NE.
(DSE = dominant strategy equilibrium; ISD =iterated strict dominance)

Example: bidding game

Recall the bidding game from lecture 1 :

		Player 2's bid				
		\$0	\$1	\$2	\$3	\$4
음	\$0	\$4.00	\$4.00	\$4.00	\$4.00	\$4.00
$\stackrel{\sim}{\sim}$	\$1	\$11.00	\$7.00	\$5.67	\$5.00	\$4.60
$\stackrel{\text { ® }}{ }$	\$2	\$10.00	\$7.33	\$6.00	\$5.20	\$4.67
$\frac{\pi}{\square}$	\$3	\$9.00	\$7.00	\$5.80	\$5.00	\$4.43
	\$4	\$8.00	\$6.40	\$5.33	\$4.57	\$4.00

Example: bidding game

Here $(2,2)$ is the unique (pure strategy) NE:

		Player 2's bid				
		\$0	\$1	\$2	\$3	\$4
응	\$0	\$4.00	\$4.00	\$4.00	\$4.00	\$4.00
$\stackrel{\sim}{\sim}$	\$1	\$11.00	\$7.00	\$5.67	\$5.00	\$4.60
¢	\$2	\$10.00	\$7.33	\$6.00	\$5.20	\$4.67
짐	\$3	\$9.00	\$7.00	\$5.80	\$5.00	\$4.43
	\$4	\$8.00	\$6.40	\$5.33	\$4.57	\$4.00

Summary of relationships

Given a game:

- Any DSE also survives ISD, and is a NE.
- If a game is dominance solvable, the resulting strategy vector is a NE
Another example of this: the Cournot game.
- Any NE survives ISD (and is also rationalizable).
(DSE = dominant strategy equilibrium; ISD =iterated strict dominance)

Example: Cournot duopoly

Unique NE: $(t / 3, t / 3)$

Example: coordination game

Two players trying to coordinate their actions:

Example: coordination game

Best response of player 1:

$$
R_{1}(\mathrm{~L})=\{\mathrm{I}\}, R_{1}(\mathrm{R})=\{r\}
$$

	Player 2	
	L	R
1	$(\underline{2}, 1)$	$(0,0)$
r	$(0,0)$	$(\underline{1}, 2)$

Example: coordination game

Best response of player 2 :

$$
R_{2}(\mathrm{I})=\{\mathrm{L}\}, R_{2}(\mathrm{r})=\{\mathrm{R}\}
$$

	Player 2	
	L	R
1	$(2, \underline{1})$	$(0,0)$
r	$(0,0)$	$(1, \underline{2})$

Example: coordination game

Two Nash equilibria: (I, L) and (r, R).
Moral: NE is not a unique predictor of play!

Example: matching pennies

No pure strategy NE for this game
Moral: Pure strategy NE may not exist.

Example: Bertrand competition

- In Cournot competition, firms choose the quantity they will produce.
- In Bertrand competition, firms choose the prices they will charge.

Bertrand competition: model

- Two firms
- Each firm i chooses a price $p_{i} \geq 0$
- Each unit produced incurs a cost $c \geq 0$
- Consumers only buy from the producer offering the lowest price
- Demand is $D>0$

Bertrand competition: model

- Two firms
- Each firm i chooses a price p_{i}
- Profit of firm i :

$$
\Pi_{i}\left(p_{1}, p_{2}\right)=\left(p_{\mathrm{i}}-c\right) \mathrm{D}_{i}\left(p_{1}, p_{2}\right)
$$

where

$$
\mathrm{D}_{i}\left(p_{1}, p_{2}\right)= \begin{cases}0, & \text { if } p_{i}>p_{-i} \\ D, & \text { if } p_{i}<p_{-i} \\ 1 / 2 D, & \text { if } p_{i}=p_{-i}\end{cases}
$$

Bertrand competition: analysis

Suppose firm 2 sets a price $=p_{2}<c$.
What is the best response set of firm 1?

Firm 1 wants to price higher than p_{2}.

$$
R_{1}\left(p_{2}\right)=\left(p_{2}, \infty\right)
$$

Bertrand competition: analysis

Suppose firm 2 sets a price $=p_{2}>c$.
What is the best response set of firm 1 ?

Firm 1 wants to price slightly lower than p_{2}
... but there is no best response!

$$
R_{1}\left(p_{2}\right)=\emptyset
$$

Bertrand competition: analysis

Suppose firm 2 sets a price $=p_{2}=c$.
What is the best response set of firm 1?

Firm 1 wants to price at or higher than c.

$$
R_{1}\left(p_{2}\right)=[c, \infty)
$$

Bertrand competition: analysis

Best response of firm 1 :

Bertrand competition: analysis

Best response of firm 2:

Bertrand competition: analysis

Where do they "cross"?

Bertrand competition: analysis

Thus the unique NE is where $p_{1}=c, p_{2}=c$.

Bertrand competition

Straightforward to show:
The same result holds if demand depends on price, i.e., if the demand at price p is $D(p)>0$.
Proof technique:
(1) Show $p_{i}<c$ is never played in a NE.
(2) Show if $c<p_{1}<p_{2}$, then firm 2 prefers to lower p_{2}.
(3) Show if $c<p_{1}=p_{2}$, then firm 2 nroferctolninıer n

Bertrand competition

What happens if $c_{1}<c_{2}$?
No pure NE exists; however, an ε-NE exists:
Each player is happy as long as they are within ε of their optimal payoff.
ε-NE : $p_{2}=c_{2}, p_{1}=c_{2}-\delta$
(where δ is infinitesimal)

Bertrand vs. Cournot

Assume demand is $\mathrm{D}(p)=a-p$.
Interpretation: $\mathrm{D}(p)$ denotes the total number of consumers willing to pay at least p for the good.
Then the inverse demand is

$$
P(Q)=a-Q
$$

This is the market-clearing price at which Q total units of supply would be sold.

Bertrand vs. Cournot

Assume demand is $\mathrm{D}(p)=a-p$.
Then the inverse demand is

$$
P(Q)=a-Q
$$

Assume $c<a$.
Bertrand eq.: $p_{1}=p_{2}=c$
Cournot eq: $\quad q_{1}=q_{2}=(a-c) / 3$
\Rightarrow Cournot price $=a / 3+2 c / 3>c$

Bertrand vs. Cournot

Bertrand vs. Cournot

Bertrand vs. Cournot

- Cournot eq. price >Bertrand eq. price
- Bertrand price = marginal cost of production
- In Cournot eq., there is positive deadweight loss.
This is because firms have market power: they anticipate their effect on prices.

Questions to think about

- Can a weakly domi nated strategy be played in a Nash equilibrium?
- Can a strictly dominated strategy be played in a Nash equilibrium?
- Why is any NE rationalizable?
- What are real-world examples of Bertrand competition? Cournot competition?

Summary: Finding NE

Finding NE is typically a matter of checking the definition.

Two basic approaches...

Finding NE: Approach 1

First approach to finding NE:
(1) Compute the complete best response mapping for each player.
(2) Find where they intersect each other (graphically or otherwise).

Finding NE: Approach 2

Second approach to finding NE:

Fix a strategy vector ($s_{1}, \ldots, s_{\mathrm{N}}$).
Check if any player has a profitable deviation.

If so, it cannot be a NE.
If not, it is an NE.

MS\&E 246: Lecture 4
 Mixed strategies

Ramesh J ohari
J anuary 18, 2007

Outline

- Mixed strategies
- Mixed strategy Nash equilibrium
- Existence of Nash equilibrium
- Examples
- Discussion of Nash equilibrium

Mixed strategies

Notation:
Given a set X, we let $\Delta(X)$ denote the set of all probability distributions on X.
Given a strategy space S_{i} for player i, the mixed strategies for player i are $\Delta\left(S_{i}\right)$.

Idea: a player can randomize over pure strategies.

Mixed strategies

How do we interpret mixed strategies?

Note that players only play once; so mixed strategies reflect uncertainty about what the other player might play.

Payoffs

Suppose for each player i, \mathbf{p}_{i} is a mixed strategy for player i; i.e., it is a distribution on S_{i}.

We extend Π_{i} by taking the expectation:

$$
\begin{aligned}
& \Pi_{i}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{N}\right)= \\
& \quad \sum_{s_{1} \in S_{1}} \cdots \sum_{s_{N} \in S_{N}} p_{1}\left(s_{1}\right) \cdots p_{N}\left(s_{N}\right) \Pi_{i}\left(s_{1}, \ldots, s_{N}\right)
\end{aligned}
$$

Mixed strategy Nash equilibrium

Given a game ($N, S_{1}, \ldots, S_{N}, \Pi_{1}, \ldots, \Pi_{N}$):
Create a new game with N players, strategy spaces $\Delta\left(S_{1}\right), \ldots, \Delta\left(S_{N}\right)$, and expected payoffs Π_{1}, \ldots, Π_{N}.
A mixed strategy Nash equilibrium is a Nash equilibrium of this new game.

Mixed strategy Nash equilibrium

Informally:
All players can randomize over available strategies.

In a mixed NE, player i 's mixed strategy must maximize his expected payoff, given all other player's mixed strategies.

Mixed strategy Nash equilibrium

Key observations:
(1) All our definitions -- dominated strategies, iterated strict dominance, rationalizability -- extend to mixed strategies.

Note: any dominant strategy must be a pure strategy.

Mixed strategy Nash equilibrium

(2) We can extend the definition of best response set identically: $R_{i}\left(\mathbf{p}_{-i}\right)$ is the set of mixed strategies for player i that maximize the expected payoff $\Pi_{i}\left(\mathbf{p}_{i}, \mathbf{p}_{-i}\right)$.

Mixed strategy Nash equilibrium

(2) Suppose $\mathbf{p}_{i} \in R_{i}\left(\mathbf{p}_{-i}\right)$, and $p_{i}\left(s_{i}\right)>0$.

Then $s_{i} \in R_{i}\left(\mathbf{p}_{-i}\right)$.
(If not, player i could improve his payoff by not placing any weight on s_{i} at all.)

Mixed strategy Nash equilibrium

(3) It follows that $R_{i}\left(\mathbf{p}_{-i}\right)$ can be constructed as follows:
(a) First find all pure strategy best responses to \mathbf{p}_{-i}; call this set $T_{i}\left(\mathbf{p}_{-i}\right) \subset S_{i}$.
(b) Then $R_{i}\left(\mathbf{p}_{-i}\right)$ is the set of all probability distributions over T_{i}, i.e.:

$$
R_{i}\left(\mathbf{p}_{-i}\right)=\Delta\left(T_{i}\left(\mathbf{p}_{-i}\right)\right)
$$

Mixed strategy Nash equilibrium

Moral:

A mixed strategy \mathbf{p}_{i} is a best response to \mathbf{p}_{-i}
if and only if
every s_{i} with $p_{i}\left(s_{i}\right)>0$ is
a best response to \mathbf{p}_{-i}

Example: coordination game

We'll now apply this insight to the coordination game.

Example: coordination game

Suppose player 1 puts probability p_{1} on I and probability $1-p_{1}$ on r.
Suppose player 2 puts probability p_{2} on L and probability $1-p_{2}$ on R .

We want to find all Nash equilibria (pure and mixed).

Example: coordination game

- Step 1: Find best response mapping of player 1.
Given p_{2} :
$\Pi_{1}\left(1, \mathbf{p}_{2}\right)=2 p_{2}$
$\Pi_{1}\left(\mathrm{r}, \mathbf{p}_{2}\right)=1-p_{2}$

Example: coordination game

- Step 1: Find best response mapping of player 1.

Then best
If p_{2} is: response is:
$<1 / 3$
$>1 / 3$
$=1 / 3$
$r\left(p_{1}=0\right)$
I ($p_{1}=1$)
anything $\left(0 \leq p_{1} \leq 1\right)$

Example: coordination game

Best response of player 1 :

Example: coordination game

- Step 2: Find best response mapping of player 2.

Then best
If p_{1} is:
response is:
$<2 / 3$
$\mathrm{R}\left(p_{2}=0\right)$
$>2 / 3$
$=2 / 3$
$\mathrm{L}\left(p_{2}=1\right)$
anything $\left(0 \leq p_{1} \leq 1\right)$

Example: coordination game

Best response of player 2:

Example: coordination game

- Step 3: Find Nash equilibria.

As before, NE occur wherever the best response mappings cross.

Example: coordination game

Nash equilibria:

Example: coordination game

Nash equilibria:
There are 3 NE :

$$
\begin{aligned}
& p_{1}=0, p_{2}=0 \Rightarrow(\mathrm{r}, \mathrm{R}) \\
& p_{1}=1, p_{2}=1 \Rightarrow(\mathrm{I}, \mathrm{~L}) \\
& p_{1}=2 / 3, p_{2}=1 / 3
\end{aligned}
$$

Note: In last NE, both players get expected payoff:
$2 / 3 \times 1 / 3 \times 2+1 / 3 \times 2 / 3 \times 1=2 / 3$.

The existence theorem

Theorem:
Any N-player game where all strategy spaces are finite has at least one Nash equilibrium.
Notes:
-The equilibrium may be mixed.
-There is a generalization if strategy spaces are not finite.

The existence theorem: proof

Let $X=\Delta\left(S_{1}\right) \times \cdots \times \Delta\left(S_{N}\right)$ be the product of all mixed strategy spaces.

Define BR : $X \rightarrow X$ by:
$\mathrm{BR}_{i}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{N}\right)=R_{i}\left(\mathbf{p}_{-i}\right)$

The existence theorem: proof

Key observations:
$-\Delta\left(S_{i}\right)$ is a closed and bounded subset of $\mathbb{R}^{\left|S_{i}\right|}$
-Thus X is a closed and bounded subset of Euclidean space
-Also, X is convex:
If $\mathbf{p}, \mathbf{p}^{\prime}$ are in X, then so is any point on the line segment between them.

The existence theorem: proof

Key observations (continued):
-BR is "continuous"
(i.e., best responses don't change suddenly as we move through X)
(Formal statement:
BR has a closed graph, with
convex and nonempty images)

The existence theorem: proof

By Kakutani's fixed point theorem, there exists $\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{N}\right)$ such that: $\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{N}\right) \in \mathrm{BR}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{N}\right)$

From definition of BR , this implies:
$\mathbf{p}_{i} \in R_{i}\left(\mathbf{p}_{-i}\right)$ for all i
Thus $\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{N}\right)$ is a NE.

The existence theorem

Notice that the existence theorem is not constructive:
It tells you nothing about how players reach a Nash equilibrium, or an easy process to find one.
Finding Nash equilibria in general can be computationally difficult.

Discussion of Nash equilibrium

Nash equilibrium works best when it is unique:
In this case, it is the only stable prediction of how rational players would play,
assuming common knowledge of rationality and the structure of the game.

Discussion of Nash equilibrium

How do we make predictions about play when there are multiple Nash equilibria?

1) Unilateral stability

Any Nash equilibrium is unilaterally stable:

If a regulator told players to play a given Nash equilibrium, they have no reason to deviate.

2) Focal equilibria

In some settings, players may have prior preferences that "focus" attention on one equilibrium.

Schelling's example (see MWG text):
Coordination game to decide where to meet in New York City.

3) Focusing by prior agreement

If players agree ahead of time on a given equilibrium, they have no reason to deviate in practice.
This is a common justification, but can break down easily in practice: when a game is played only once, true enforcement is not possible.

4) Long run learning

Another common defense is that if players play the game many (independent) times, they will naturally "converge" to some Nash equilibrium as a stable convention.

Again, this is dangerous reasoning: it ignores a rationality model for dynamic play.

Problems with NE

Nash equilibrium makes very strong assumptions:
-complete information
-rationality
-common knowledge of rationality
-"focusing" (if multiple NE exist)

Example

Find all NE (pure and mixed) of the following game:

Player 2

MS\&E 246: Lecture 5
 Efficiency and fairness

Ramesh J ohari

A digression

In this lecture:

We will use some of the insights of static game analysis to understand efficiency and fairness.

Basic setup

- N players
- S_{n} : strategy space of player n
- Z : space of outcomes
- $z\left(s_{1}, \ldots, s_{N}\right)$:
outcome realized when $\left(s_{1}, \ldots, s_{N}\right)$ is played
- $\Pi_{n}(z)$:
payoff to player n when outcome is z

(Pareto) Efficiency

An outcome z^{\prime} Pareto dominates z if:
$\Pi_{n}\left(z^{\prime}\right) \geq \Pi_{n}(z)$ for all n,
and the inequality is strict for at least one n.

An outcome z is Pareto efficient if it is not Pareto dominated by any other $z^{\prime} \in X$.
\Rightarrow Can't make one player better off without making another worse off.

Are equilibria efficient?

Recall the Prisoner's dilemma:

	Player 1	
	defect	cooperate
defect	$(-4,-4)$	$(-1,-5)$
cooperate	$(-5,-1)$	$(-2,-2)$

Are equilibria efficient?

Recall the Prisoner's dilemma:

	Player 1	
	defect	cooperate
defect	$(-4,-4)$	$(-1,-5)$
cooperate	$(-5,-1)$	$(-2,-2)$

Unique dominant strategy eq. : (D, D).

Are equilibria efficient?

	Player 1	
	defect	cooperate
defect	$(-4,-4)$	$(-1,-5)$
cooperate	$(-5,-1)$	$(-2,-2)$

But (C, C) Pareto dominates (D, D).

Are equilibria efficient?

- Moral:

Even when every player has a strict dominant strategy, the resulting equilibrium may be inefficient.

Resource sharing

- N users want to send data across a shared communication medium
- x_{n} : sending rate of user n ($\mathrm{pkts} / \mathrm{sec}$)
- $p(y)$: probability a packet is lost when total sending rate is y
- $\Pi_{n}(\mathbf{x})=$ net throughput of user n

$$
=x_{n}\left(1-p\left(\sum_{i} x_{i}\right)\right)
$$

Resource sharing

- Suppose: $p(y)=\min (y / C, 1)$

Resource sharing

- Suppose: $p(y)=\min (y / C, 1)$
- Given x:

Define $Y=\sum_{i} x_{i}$ and $\quad Y_{-n}=\sum_{i \neq n} x_{i}$

- Thus, given x_{-n},

$$
\Pi_{n}\left(x_{n}, \mathbf{x}_{-n}\right)=x_{n}\left(1-\frac{x_{n}+Y_{-n}}{C}\right)
$$

if $x_{n}+Y_{-n} \leq C$, and zero otherwise

Pure strategy Nash equilibrium

- We only search for NE s.t. $\sum_{i} x_{i} \leq C$ (Why?)
- In this region, first order conditions are:

$$
1-Y_{-n} / C-2 x_{n} / C=0, \text { for all } n
$$

Pure strategy Nash equilibrium

- We only search for NE s.t. $\sum_{i} x_{i} \leq C$ (Why?)
- In this region, first order conditions are:

$$
1-Y / C=x_{n} / C, \text { for all } n
$$

- If we sum over n and solve for Y, we find:

$$
Y^{\mathrm{NE}}=N C /(N+1)
$$

- So: $x_{n}{ }^{\mathrm{NE}}=C /(N+1)$, and

$$
\Pi_{n}\left(\mathrm{x}^{\mathrm{NE}}\right)=C /(N+1)^{2}
$$

Maximum throughput

- Note that total throughput

$$
=\sum_{n} \Pi_{n}(\mathbf{x})=Y(1-p(Y))=Y(1-Y / C)
$$

- This is maximized at $Y^{\mathrm{MAX}}=C$ / 2
- Define $x_{n}{ }^{\text {MAX }}=Y^{\text {MAX }} / N=C / 2 N$
- Then (if $N>1$):

$$
\Pi_{n}\left(\mathrm{x}^{\mathrm{MAX}}\right)=C / 4 N>C /(N+1)^{2}=\Pi_{n}\left(\mathrm{x}^{\mathrm{NE}}\right)
$$

So: x^{NE} is not efficient.

Resource sharing: summary

- At NE, users' rates are too high. Why?
- When user n maximizes Π_{n}, he ignores reduction in throughput he causes for other players (the negative externality)
- AKA: Tragedy of the Commons
- If externality is positive, then NE strategies are too Iow

An interference model

- $N=2$ wireless devices want to send data
- Strategy =transmit power $S_{1}=S_{2}=\{0, P\}$
- Each device sees the other's transmission as interference

An interference model

Payoff matrix ($0<\varepsilon \ll R_{2}<R_{1}$):

An interference model

- (P, P) is unique strict dominant strategy equilibrium (and hence unique NE)
- Note that (P, P) is not Pareto dominated by any pure strategy pair
- But.. the mixed strategy pair $\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)$ with $p_{1}(0)=p_{2}(0)=p_{1}(P)=p_{2}(P)=1 / 2$ Pareto dominates (P, P) if $R_{n} \gg$ (Payoffs: $\left.\Pi_{n}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)=R_{n} / 4+\varepsilon / 4\right)$

An interference model

- How can coordination improve throughput?
- Idea:

Suppose both devices agree to a protocol that decides when each device is allowed to transmit.

An interference model

- Cooperative timesharing:

Device 1 is allowed to transmit a fraction q of the time.

Device 2 is allowed to transmit a fraction $1-q$ of the time.
Devices can use any mixed strategy when they control the channel.

An interference model

Achievable payoffs via timesharing:

An interference model

Achievable payoffs via timesharing:

An interference model

- So when timesharing is used, the set of Pareto efficient payoffs becomes:
$\left\{\left(\Pi_{1}, \Pi_{2}\right): \Pi_{1}=q R_{1}, \Pi_{2}=(1-q) R_{2}\right\}$
- For efficiency:

When device n has control, it transmits at power P

An interference model

- So when timesharing is used, the set of Pareto efficient payoffs becomes:
$\left\{\left(\Pi_{1}, \Pi_{2}\right): \Pi_{1}=q R_{1}, \Pi_{2}=(1-q) R_{2}\right\}$
- For efficiency:

When device n has control, it transmits at power P

An interference model

- So when timesharing is used, the set of Pareto efficient payoffs becomes:
$\left\{\left(\Pi_{1}, \Pi_{2}\right): \Pi_{1}=q R_{1}, \Pi_{2}=(1-q) R_{2}\right\}$
(Note: in general, the set of achievable payoffs is the convex hull of entries in the payoff matrix)

Choosing an efficient point

Which q should the protocol choose?

- Choice 1: Utilitarian solution
\Rightarrow Maximize total throughput $\max _{q} q R_{1}+(1-q) R_{2} \quad \Rightarrow \quad q=1$
$\Pi_{1}=R_{1}, \Pi_{2}=0$
Is this "fair"?

Choosing an efficient point

Which q should the protocol choose?

- Choice 2: Max-min fair solution
\Rightarrow Maximize smallest Π_{n} $\max _{q} \min \left\{q R_{1},(1-q) R_{2}\right\}$
$\Rightarrow q R_{1}=(1-q) R_{2}$,
so $\Pi_{1}=\Pi_{2}$ (i.e., equalize rates)

Fairness

Fairness corresponds to a rule for choosing between multiple efficient outcomes.

Unlike efficiency, there is no universally accepted definition of "fair."

Nash bargaining solution (NBS)

- Fix desirable properties of a "fair" outcome
- Show there exists a unique outcome satisfying those properties

NBS: Framework

- $T=\left\{\left(\Pi_{1}, \Pi_{2}\right):\left(\Pi_{1}, \Pi_{2}\right)\right.$ is achievable $\}$
- assumed closed, bounded, and convex
- $\Pi^{*}=\left(\Pi_{1}{ }^{*}, \Pi_{2}{ }^{*}\right)$: status quo point
- each n can guarantee Π_{n} * for himself through unilateral action

NBS: Framework

- $f\left(T, \Pi^{*}\right)=\left(f_{1}\left(T, \Pi^{*}\right), f_{2}\left(T, \Pi^{*}\right)\right) \in T \quad:$ a "bargaining solution",
i.e., a rule for choosing a payoff pair
- What properties (axioms) should f satisfy?

Axioms

Axiom 1: Pareto efficiency
The payoff pair $f\left(T, \Pi^{*}\right)$ must be Pareto efficient in T.

Axiom 2: Individual rationality
For all $n, f_{n}\left(T, \Pi^{*}\right) \geq \Pi_{n}{ }^{*}$.

Axioms

Given $\mathbf{v}=\left(v_{1}, v_{2}\right)$, let

$$
T+\mathbf{v}=\left\{\left(\Pi_{1}+v_{1}, \quad \Pi_{2}+v_{2}\right):\left(\Pi_{1}, \Pi_{2}\right) \in T\right\}
$$

(i.e., a change of origin)

Axiom 3: Independence of utility origins
Given any $\mathbf{v}=\left(v_{1}, v_{2}\right)$,

$$
f\left(T+\mathbf{v}, \Pi^{*}+\mathbf{v}\right)=f\left(T, \Pi^{*}\right)+\mathbf{v}
$$

Axioms

Given $\beta=\left(\beta_{1}, \beta_{2}\right)$, let

$$
\beta \cdot T=\left\{\left(\beta_{1} \Pi_{1}, \beta_{2} \Pi_{2}\right):\left(\Pi_{1}, \Pi_{2}\right) \in T\right\}
$$

(i.e., a change of utility units)

Axiom 4: Independence of utility units
Given any $\beta=\left(\beta_{1}, \beta_{2}\right)$, for each n we have

$$
f_{n}\left(\beta \cdot T,\left(\beta_{1} \Pi_{1}^{*}, \beta_{2} \Pi_{2}^{*}\right)\right)=\beta_{n} f_{n}\left(T, \Pi^{*}\right)
$$

Axioms

The set T is symmetric if it looks the same when the $\Pi_{1}-\Pi_{2}$ axes are swapped:

Axioms

The set T is symmetric if it looks the same when the $\Pi_{1}-\Pi_{2}$ axes are swapped:

Not symmetric

Axioms

The set T is symmetric if it looks the same when the $\Pi_{1}-\Pi_{2}$ axes are swapped:

Axioms

The set T is symmetric if it looks the same when the $\Pi_{1}-\Pi_{2}$ axes are swapped.

Axiom 5: Symmetry
If T is symmetric and $\Pi_{1}{ }^{*}=\Pi_{2}^{*}$, then $f_{1}\left(T, \Pi^{*}\right)=f_{2}\left(T, \Pi^{*}\right)$.

Axioms

Axiom 6: Independence of irrelevant alternatives

Axioms

Axiom 6: Independence of

 irrelevant alternatives

Axioms

Axiom 6: Independence of irrelevant alternatives

Axioms

Axiom 6: Independence of irrelevant alternatives

If $T^{\prime} \subset T$ and $f\left(T, \Pi^{*}\right) \in T^{\prime}$, then $f\left(T, \Pi^{*}\right)=f\left(T^{\prime}, \Pi^{*}\right)$.

Nash bargaining solution

Theorem (Nash):
There exists a unique f satisfying Axioms $1-6$, and it is given by:
$f\left(T, \Pi^{*}\right)$
$=\arg \max _{\Pi \in T: \Pi \geq \Pi^{*}}\left(\Pi_{1}-\Pi_{1}^{*}\right)\left(\Pi_{2}-\Pi_{2}^{*}\right)$
$=\arg \max _{\Pi \in T: \Pi \geq \Pi^{*}} \sum_{n=1,2} \log \left(\Pi_{n}-\Pi_{n}{ }^{*}\right)$
(Sometimes called proportional fairness.)

Nash bargaining solution

- The proof relies on all the axioms
- The utilitarian solution and the max-min fair solution do not satisfy independence of utility units
- See course website for excerpt from MWG

Back to the interference model

- $T=\left\{\left(\Pi_{1}, \Pi_{2}\right) \geq 0\right.$:
$\left.\Pi_{1} \leq q R_{1}, \Pi_{2} \leq(1-q) R_{2}, 0 \leq q \leq 1\right\}$
- $\Pi^{*}=(\varepsilon, \varepsilon)$
- NBS: $\max _{q} \log \left(q R_{1}-\varepsilon\right)+\log \left((1-q) R_{2}-\varepsilon\right)$

Solution: $q=1 / 2+(\varepsilon / 2)\left(1 / R_{1}-1 / R_{2}\right)$
e.g., when $\varepsilon=0$,

$$
\Pi_{1}^{\mathrm{NBS}}=R_{1} / 2, \quad \Pi_{2}^{\mathrm{NBS}}=R_{2} / 2
$$

Comparisons

Assume $\varepsilon=0, R_{1}>R_{2}$

Summary

- When we say "efficient", we mean Pareto efficient.
- When we say "fair", we must make clear what we mean!
- Typically, Nash equilibria are not efficient
- The Nash bargaining solution is one axiomatic approach to fairness

MS\&E 246: Lecture 6 Dynamic games of perfect and complete information

Ramesh J ohari

Outline

- Dynamic games
- Perfect information
- Game trees
- Strategies
- Backward induction

Dynamic games

Instead of playing simultaneously,
the rules dictate when players play,
and what they know about the past when they play.

Example

Consider the following game:
Player 2

	L	R
1	$(4,1)$	$(1,2)$
r	$(2,1)$	$(0,0)$

Only pure NE is (I, R).

Example: dynamic game

Suppose player 1 moves first, and player 2 moves second:

Example: dynamic game

If player 1 plays I...

Example: dynamic game

..then player 2 plays $\mathrm{R} \Rightarrow \Pi_{1}=1$.

Example: dynamic game

If player 1 plays r...

Example: dynamic game

.. then player 2 plays $L \Rightarrow \Pi_{1}=2$!

Example: dynamic game

What if player 2 does not observe player 1's decision?

- - - - : Player 2 cannot distinguish between these nodes

Dynamics

What if player 2 does not observe player 1's decision?

Harder to predict what player 2 might do at stage 2.

Perfect information

In this lecture we will study (finite) dynamic games of perfect information:

These are games where all players observe the entire history of the game, and the game terminates in finitely many steps.
(NOTE: This is not complete information!)

Game tree

Fundamental structure: the game tree.

1) Each non-leaf node v is identified with a unique player $I(v)$.
2) All edges out from a node v correspond to actions available to $I(v)$.
3) All leaves are labeled with the payoffs for all players.

Game tree

Game trees and extensive form

Idea: At each node v, player $I(v)$ chooses an action; this leads to the next "stage."

The game tree is also called the extensive form of the game.

Strategies

For player 1 to "reason" about player 2, there must be a prediction of what player 2 would play in any of his nodes.
(See example at the beginning of lecture.)

Strategies

For player 1 to "reason" about player 2, there must be a prediction of what player 2 would play in any of his nodes.

Thus in a dynamic game, a strategy s_{i} is a complete contingent plan:
For each v such that $I(v)=i$,
$s_{i}(v)$ specifies the action of player i at node v.

Backward induction

We solve finite games of perfect information using backward induction.

Idea: find "optimal" decisions for players from the bottom of the tree to the top.

Backward induction

Formally: Suppose the game has L stages.

- Find the set of optimal actions for player $I(v)$ at each node v in stage L (possibly including mixed actions).
- Label each node v in stage L with payoffs from optimal actions, and remove any children.
- Return to (1) and repeat.

Backward induction

- Note this specifies complete strategies for all players, as well as the path(s) of actual play.
- Any finite dynamic game of perfect information has a backward induction solution.

Example

Example

Example

Example

Example

$$
\stackrel{\bullet_{(2,1)}^{1.1}}{ }
$$

Backward induction solution

Strategies:
Player 1 plays r at node 1.1. Player 2 plays R at node 2.1, and plays L at node 2.2.

The equilibrium path of play is (r, L).

Strategic form

The strategic (or normal) form is:
Player 2

		$L L$	$L R$	$R L$	$R R$
Player 1					
	$(4,1)$	$(4,1)$	$(1,2)$	$(1,2)$	
	$(2,1)$	$(0,0)$	$(2,1)$	$(0,0)$	

Strategic form

What are all pure NE of the strategic form? (r, RL) and (I, RR)

But (I, RR) is not credible:
Player 1 knows a rational player 2 would never play R in 2.2.

Strategic form

Any backward induction solution must be a NE of the strategic form, but the converse does not necessarily hold.

MS\&E 246: Lecture 7
Stackelberg games

Ramesh J ohari

Stackelberg games

In a Stackelberg game, one player
(the "leader") moves first,
and all other players (the "followers") move after him.

Stackelberg competition

- Two firms ($N=2$)
- Each firm chooses a quantity $s_{n} \geq 0$
- Cost of producing $s_{n}: c_{n} s_{n}$
- Demand curve:

$$
\text { Price }=P\left(s_{1}+s_{2}\right)=a-b\left(s_{1}+s_{2}\right)
$$

- Payoffs:

$$
\text { Profit }=\Pi_{n}\left(s_{1}, s_{2}\right)=P\left(s_{1}+s_{2}\right) s_{n}-c_{n} s_{n}
$$

Stackelberg competition

In Stackel berg competition, firm 1 moves before firm 2.

Firm 2 observes firm 1's quantity choice s_{1}, then chooses s_{2}.

Stackelberg competition

We solve the game using backward induction.

Start with second stage:
Given s_{1}, firm 2 chooses s_{2} as

$$
s_{2}=\arg \max _{s_{2} \in s_{2}} \Pi_{2}\left(s_{1}, s_{2}\right)
$$

But this is just the best response $R_{2}\left(s_{1}\right)$!

Best response for firm 2

Recall the best response given s_{1} :

$$
\max _{s_{2} \geq 0}\left[\left(a-b s_{2}-b s_{1}\right) s_{2}-c_{2} s_{2}\right] \Longrightarrow
$$

Differentiate and solve:

$$
a-c_{2}-b s_{1}-2 b s_{2}=0
$$

So:

$$
R_{2}\left(s_{1}\right)=\left[\frac{a-c_{2}}{2 b}-\frac{s_{1}}{2}\right]^{+}
$$

Firm 1's decision

Backward induction:
Maximize firm 1's decision, accounting for firm 2's response at stage 2.

Thus firm 1 chooses s_{1} as

$$
s_{1}=\arg \max _{s_{1} \in S_{1}} \Pi_{1}\left(s_{1}, R_{2}\left(s_{1}\right)\right)
$$

Firm 1's decision

Define $t_{n}=\left(a-c_{n}\right) / b$.
If $s_{1} \leq t_{2}$, then payoff to firm 1 is:

$$
\Pi_{1}=\left(a-b s_{1}-b\left(\frac{t_{2}}{2}-\frac{s_{1}}{2}\right)\right) s_{1}-c_{1} s_{1}
$$

If $s_{1}>t_{2}$, then payoff to firm 1 is:

$$
\Pi_{1}=\left(a-b s_{1}\right) s_{1}-c_{1} s_{1}
$$

Firm 1's decision

For simplicity, we assume that

$$
2 c_{2} \leq a+c_{1}
$$

This assumption ensures that

$$
\left(a-b s_{1}\right) s_{1}-c_{1} s_{1}
$$

is strictly decreasing for $s_{1}>t_{2}$.

Thus firm 1's optimal s_{1} must lie in [0, t_{2}].

Firm 1's decision

If $s_{1} \leq t_{2}$, then payoff to firm 1 is:

$$
\Pi_{1}=\left(a-b s_{1}-b\left(\frac{t_{2}}{2}-\frac{s_{1}}{2}\right)\right) s_{1}-c_{1} s_{1}
$$

Firm 1's decision

If $s_{1} \leq t_{2}$, then payoff to firm 1 is:

$$
\Pi_{1}=\left(\frac{a}{2}-\frac{b}{2} s_{1}+\frac{c_{2}}{2}\right) s_{1}-c_{1} s_{1}
$$

Firm 1's decision

If $s_{1} \leq t_{2}$, then payoff to firm 1 is:

$$
\Pi_{1}=-\frac{b}{2} s_{1}^{2}+\left(\frac{a}{2}+\frac{c_{2}}{2}-c_{1}\right) s_{1}
$$

Thus optimal s_{1} is:

$$
s_{1}=\frac{a-2 c_{1}+c_{2}}{2 b}
$$

Stackelberg equilibrium

So what is the Stackelberg equilibrium?
Must give complete strategies:
$s_{1}^{*}=\left(\mathrm{a}-2 c_{1}+c_{2}\right) / 2 b$
$s_{2}{ }^{*}\left(s_{1}\right)=\left(t_{2} / 2-s_{1} / 2\right)^{+}$
The equilibrium outcome is that
firm 1 plays $s_{1}{ }^{*}$, and firm 2 plays $s_{2}{ }^{*}\left(s_{1}{ }^{*}\right)$.

Comparison to Cournot

Assume $c_{1}=c_{2}=c$.
In Cournot equilibrium:
(1) $s_{1}=s_{2}=t / 3$.
(2) $\Pi_{1}=\Pi_{2}=(a-c)^{2} /(9 b)$.

In Stackelberg equilibrium:
(1) $s_{1}=t / 2, s_{2}=t / 4$.
(2) $\Pi_{1}=(a-c)^{2} /(8 b), \Pi_{2}=(a-c)^{2} /(16 b)$

Comparison to Cournot

So in Stackelberg competition:
-the leader has higher profits
-the follower has lower profits
This is called a first mover advantage.

Stackelberg competition: moral

Moral:
Additional information available can lower a player's payoff, if it is common knowledge that the player will have the additional information.
(Here: firm 1 takes advantage of knowing firm 2 knows s_{1}.)

MS\&E 246: Lecture 8
Dynamic games of complete and imperfect information

Ramesh J ohari

Outline

- Imperfect information
- Information sets
- Perfect recall
- Moves by nature
- Strategies
- Subgames and subgame perfection

Imperfect information

Informally:
In perfect information games, the history is common knowledge.
In imperfect information games, players move without necessarily knowing the past.

Game trees

We adhere to the same model of a game tree as in Lecture 6.

1) Each non-leaf node v is identified with a unique player $I(v)$.
2) All edges out from a node v correspond to actions available to $I(v)$.
3) All leaves are labeled with the payoffs for all players.

Information sets

We represent imperfect information by combining nodes into information sets.
An information set h is:
-a subset of nodes of the game tree
-all identified with the same player $I(h)$
-with the same actions available to $I(h)$ at each node in h

Information sets

Idea:
When player $I(h)$ is in information set h, she cannot distinguish between the nodes of h.

Information sets

Let H denote all information sets.
The union of all sets $h \in H$ gives all nodes in the tree.
(We use $h(v)$ to denote the information set corresponding to a node v.)

Perfect information

Formal definition of perfect information: All information sets are singletons.

Example

Coordination game without observation:

- - - - : Player 2 cannot distinguish between these nodes

Perfect recall

We restrict attention to games of perfect recall:

These are games where the information sets ensure a player never forgets what she once knew, or what she played.
[Formally:
If v, v^{\prime} are in the same information set h, neither is a predecessor of the other in the game tree.
Also, if v^{\prime}, v^{\prime} are in the same information set, and v is a predecessor of v^{\prime}, then there must exist a node $w \in h(v)$ that is a predecessor of $v^{\prime \prime}$, such that the action taken on the path from v to v^{\prime} is the same as the action taken on the path from w to $v^{\prime \prime}$.]

Moves by nature

We allow one additional possibility:
At some nodes, Nature moves.
At such a node v, the edges are labeled with probabilities of being selected.

Any such node v models an exogenous event.
[Note: Players use expected payoffs.]

Strategies

The strategy of a player is a function from information sets of that player to an action in each information set.
(In perfect information games, strategies are mappings from nodes to actions.)

Example

Example

Player 1: 1 information set
3 strategies - I, m, r

Example

Player 2: 2 information sets
4 strategies - LA, LB, RA, RB

Subgames

A (proper) subgame is a subtree that:
-begins at a singleton information set;
-includes all subsequent nodes;
-and does not cut any information sets.
Idea:
Once a subgame begins, subsequent structure is common knowledge.

Example

This game has two subgames, rooted at 1.1 and 2.2.

Extending backward induction

In games of perfect information, any subtree is a subgame.
What is the analog of backward induction?

Try to find "equilibrium" behavior from the "bottom" of the tree upwards.

Subgame perfection

A strategy vector $\left(s_{1}, \ldots, s_{N}\right)$ is a subgame perfect Nash equilibrium (SPNE) if it induces a Nash equilibrium in (the strategic form of) every subgame.
(In games of perfect information, SPNE reduces to backward induction.)

Subgame perfection

"Every subgame" includes the game itself.
Idea:
-Find NE for "Iowest" subgame
-Replace subgame subtree with equilibrium payoffs
-Repeat until we reach the root node of the original game

Subgame perfection

- As before, a SPNE specificies a complete contingent plan for each player.
- The equilibrium path is the actual play of the game under the SPNE strategies.
- As long as the game has finitely many stages, and finitely many actions at each information set, an SPNE always exists.

MS\&E 246: Lecture 9
 Sequential bargaining

Ramesh J ohari

Nash bargaining solution

Recall Nash's approach to bargaining:

The planner is given the set of achievable payoffs and status quo point.

Implicitly:
The process of bargaining does not matter.

Dynamics of bargaining

In this lecture:

We use a dynamic game of perfect information to model the process of bargaining.

An interference model

Recall the interference model:

- Two devices
- Device 1 given channel a fraction q of the time
- For efficiency:

When device n has control, it transmits at full power P

An interference model

- When timesharing is used, the set of Pareto efficient payoffs becomes:
$\left\{\left(\Pi_{1}, \Pi_{2}\right): \Pi_{1}=q R_{1}, \Pi_{2}=(1-q) R_{2}\right\}$
- We now assume the devices bargain through a sequence of alternating offers.

Alternating offers

- At time 0 :
- Stage OA:

Device 1 proposes a choice of q
(denoted q_{1})

- Stage OB:

Device 2 decides to accept or reject device 1's offer

Two period model

Assumption 1:
If device 2 rejects at stage $0 B$,
then predetermined choice $Q \in[0,1]$ is implemented at time 1

Discounting

Assumption 2:
Devices care about delay:
Any payoff received by device i at time k is discounted by $\delta_{i}{ }^{k}$.
$0<\delta_{i}<1$: discount factor of device i

Game tree

Game tree

- This is a dynamic game of perfect information.
- We solve it using backward induction.

Backward induction

1. Given q_{1}, at Stage OB :

- Device 2 rejects if:

$$
\delta_{2}(1-Q) \quad>\left(1-q_{1}\right)
$$

Backward induction

1. Given q_{1}, at Stage OB :

- Device 2 rejects $\left(s_{2}\left(q_{1}\right)=\mathrm{R}\right)$ if:

$$
q_{1}>1-\delta_{2}(1-Q)
$$

- Device 2 accepts $\left(s_{2}\left(q_{1}\right)=\mathrm{A}\right)$ if:

$$
q_{1}<1-\delta_{2}(1-Q)
$$

- Device 2 is indifferent

$$
\begin{gathered}
\left(s_{2}\left(q_{1}\right) \in\{\mathrm{A}, \mathrm{R}\}\right) \text { if } \\
q_{1}=1-\delta_{2}(1-Q)
\end{gathered}
$$

Backward induction

2. At Stage OA:

- Device 1 maximizes $\Pi_{1}\left(q_{1}, s_{2}\left(q_{1}\right)\right)$ over offers ($0 \leq q_{1} \leq 1$)
- Claim: Maximum value of Π_{1} is

$$
\left(1-\delta_{2}(1-Q)\right) R_{1}
$$

Backward induction

2. At Stage OA:

- Claim: Maximum value of Π_{1} is

$$
\Pi_{1}^{\operatorname{MAX}}=\left(1-\delta_{2}(1-Q)\right) R_{1}
$$

- Proof:
(a) Maximum is achievable:

If $\quad q_{1}$ increases to $1-\delta_{2}(1-Q)$,
then Π_{1} increases to $\Pi_{1}^{\text {max }}$

Backward induction

2. At Stage OA:

- Claim: Maximum value of Π_{1} is
$\Pi_{1}^{\text {MAX }}=\left(1-\delta_{2}(1-Q)\right) R_{1}$
- Proof:
(b) If $q_{1}>1-\delta_{2}(1-Q)$, then $\Pi_{1}<\Pi_{1}^{\text {mAX: }}$

Device 2 rejects $\Rightarrow \Pi_{1}=\delta_{1} Q R_{1}$

Backward induction

2. At Stage OA:

- Claim: Maximum value of Π_{1} is
$\Pi_{1}^{\text {MAX }}=\left(1-\delta_{2}(1-Q)\right) R_{1}$
- Proof:
(b) If $q_{1}>1-\delta_{2}(1-Q)$, then $\Pi_{1}<\Pi_{1}^{\text {MAX: }}$

But note that: $\quad \delta_{1} Q+\delta_{2}(1-Q)<1$

Backward induction

2. At Stage OA:

- Claim: Maximum value of Π_{1} is
$\Pi_{1}^{\text {MAX }}=\left(1-\delta_{2}(1-Q)\right) R_{1}$
- Proof:
(b) If $q_{1}>1-\delta_{2}(1-Q)$, then $\Pi_{1}<\Pi_{1}^{\text {MAX: }}$

But note that: $\quad \delta_{1} Q<1-\delta_{2}(1-Q)$

Backward induction

2. At Stage OA:

- Claim: Maximum value of Π_{1} is

$$
\Pi_{1}^{\operatorname{MAX}}=\left(1-\delta_{2}(1-Q)\right) R_{1}
$$

- Proof:
(b) If $q_{1}>1-\delta_{2}(1-Q)$, then $\Pi_{1}<\Pi_{1}^{\text {MAX }}$:

So $\delta_{1} Q R_{1}<\left(1-\delta_{2}(1-Q)\right) R_{1}$

Backward induction

2. At Stage OA:

- Best responses for device 1 :

All choices of q_{1} that achieve $\Pi_{1}^{\text {MAX }}$
The only possibility:

$$
q_{1}{ }^{*}=1-\delta_{2}(1-Q)
$$

Backward induction

2. At Stage OA:

- If $s_{2}\left(q_{1}{ }^{*}\right)=$ reject,
no best response exists for device 1 !
- If $s_{2}\left(q_{1}^{*}\right)=$ accept, best response for device 1 is $q_{1}=q_{1}{ }^{*}$

Unique SPNE

What is the unique SPNE?

- Must give strategies for both players!

Unique SPNE

What is the unique SPNE?

- Device 1:

At Stage OA , offer $q_{1}=q_{1}{ }^{*}$

- Device 2:

At Stage OB,
accept if $q_{1} \leq q_{1}{ }^{*}$, reject if $q_{1}>q_{1}{ }^{*}$

Payoffs at unique SPNE

- So the offer of device 1 is accepted immediately by device 2 .
- Device 1 gets: $\quad \Pi_{1}=\left(1-\delta_{2}(1-Q)\right) R_{1}$
- Device 2 gets: $\Pi_{2}=\delta_{2}\left(1-q_{0}\right) R_{2}$

Infinite horizon

More realistic model:

Devices alternate offers indefinitely.

For simplicity: assume $\delta_{1}=\delta_{2}=\delta$

Finite horizon

Infinite horizon

Infinite horizon: formal model

- Device 1 offers $q_{1 k}$ at stage $k \mathrm{~A}$, for k even
- Device 2 offers $q_{2 k}$ at stage $k \mathrm{~A}$, for k odd
- Device 2 accepts/ rej ects stage $k \mathrm{~A}$ offer at stage $k \mathrm{~B}$, for k even
- Device 1 accepts/ rej ects stage k A offer at stage $k \mathrm{~B}$, for k odd

Infinite horizon: formal model

- Payoffs:
$\Pi_{1}=\Pi_{2}=0$ if no offer ever accepted (similar to status quo in NBS)

Infinite horizon: formal model

- Payoffs:

If offer made at stage $k \mathrm{~A}$ by player i accepted at stage k B :

$$
\begin{aligned}
& \Pi_{1}=\delta^{k} q_{i k} R_{1} \\
& \Pi_{2}=\delta^{k}\left(1-q_{i k}\right) R_{2}
\end{aligned}
$$

Infinite horizon

- Can't use backward induction!
- Use stationarity:

Subgame rooted at 1A is the same as the original game, with roles of 1 and 2 reversed.

SPNE

Define V and v :
$V R_{1}=$ highest time 0 payoff to device 1 among all SPNE
$v R_{1}=$ lowest time 0 payoff to device 1 among all SPNE

SPNE

Then if device 2 rejects at OB:
$V R_{2}=$ highest time 1 payoff to device 2 among all SPNE
$v R_{2}=$ lowest time 1 payoff to device 2 among all SPNE

SPNE: Two inequalities

- $v R_{1} \geq(1-\delta V) R_{1}$

At Stage OB:
Device 2 will accept any $q_{10}<1-\delta V$

So at Stage 0A:
Device 1 must earn at least $(1-\delta V) R_{1}$

SPNE: Two inequalities

- $V R_{1} \leq(1-\delta v) R_{1}$

If offer q_{10} is accepted at stage OB, device 2 must get a timeshare of at least δv
$\Rightarrow q_{10} \leq 1-\delta v$

SPNE: Two inequalities

- $V R_{1} \leq(1-\delta v) R_{1}$

If offer q_{10} is rej ected at stage OB, device 1 earns at most $\delta(1-v) R_{1}$ since device 2 earns at least $\delta v R_{2}$

$$
\Rightarrow \Pi_{1} \leq \delta(1-v) R_{1} \leq(1-\delta v) R_{1}
$$

Combining inequalities

- $v \leq V$
- $v \geq 1-\delta V$
- $V \leq 1-\delta v$

Combining inequalities

- $v \leq V$
- $v+\delta V \geq 1$
- $V+\delta v \leq 1$

So:

$$
\begin{array}{ccc}
& & V+\delta v \leq v+\delta V \\
\Rightarrow & (1-\delta) V \leq(1-\delta) v \\
\Rightarrow & V=v
\end{array}
$$

Unique SPNE

- So $V=1-\delta V \Rightarrow$

$$
V=\frac{1}{1+\delta}
$$

- SPNE strategies for device 1:

At Stage $k \mathrm{~A}, k$ even: Offer $q_{1 k}=1-\delta V$
At Stage $k \mathrm{~B}, k$ odd: Accept if $q_{2 k} \geq \delta V$

Unique SPNE

- So $V=1-\delta V \Rightarrow$

$$
V=\frac{1}{1+\delta}
$$

- SPNE strategies for device 2:

At Stage $k \mathrm{~A}, k$ odd:
Offer $q_{2 k}=\delta V$
At Stage k B , k even:
Accept if $q_{1 k} \leq 1-\delta V$

Unique SPNE: Payoffs

Stage OA offer by device 1 is accepted in Stage OB by device 2 .

$$
\Pi_{1}^{\mathrm{SPNE}}=\frac{R_{1}}{1+\delta}, \quad \Pi_{2}^{\mathrm{SPNE}}=\frac{\delta R_{2}}{1+\delta}
$$

Infinite horizon: Discussion

- Outcome is efficient:

No "lost utility" due to discounting

- Stationary SPNE strategies:

Actions do not depend on time k

- First mover advantage:
$\Pi_{1}{ }^{\text {SPNE }}>\Pi_{2}^{\text {SPNE }}$

Shortening time periods

Shorten each time step to length $t<1 \ldots$
... Same as changing discount factor to δ^{t}

$$
\Pi_{1}^{\mathrm{SPNE}}=\frac{R_{1}}{1+\delta^{t}}, \quad \Pi_{2}^{\mathrm{SPNE}}=\frac{\delta^{t} R_{2}}{1+\delta^{t}}
$$

As $t \rightarrow 0$, note that $\Pi_{i}{ }^{\text {SPNE }} \rightarrow R_{i} / 2$. Nash bargaining solution!

In general

If $\delta_{1} \neq \delta_{2}$:
Find SPNE using two period model: Note that Q must be SPNE payoff when device 2 offers first

Can show (for an appropriate limit) that weighted NBS obtained as $t \rightarrow 0$:
More patient player weighted higher

Summary

- Alternating offers: finite horizon Backward induction solution
- Alternating offers: infinite horizon Unique SPNE
Relation to Nash bargaining solution

MS\&E 246: Lecture 10
 Repeated games

Ramesh J ohari

What is a repeated game?

A repeated game is:

A dynamic game constructed by playing the same game over and over.

It is a dynamic game of imperfect information.

This lecture

- Finitely repeated games
- Infinitely repeated games
- Trigger strategies
- The folk theorem

Stage game

At each stage, the same game is played: the stage game G.
Assume:

- G is a simultaneous move game
- In G, player i has:
- Action set A_{i}
- Payoff $P_{i}\left(a_{i}, \mathbf{a}_{-i}\right)$

Finitely repeated games

$G(K): G$ is repeated K times

Information sets:
All players observe outcome of each stage.

What are: strategies? payoffs? equilibria?

History and strategies

Period t history h_{t} :

$$
\begin{aligned}
& h_{t}=(\mathbf{a}(0), \ldots, \mathbf{a}(t-1)) \text { where } \\
& \quad \mathbf{a}(\tau)=\text { action profile played at stage } \tau
\end{aligned}
$$

Strategy s_{i} :
Choice of stage t action $s_{i}\left(h_{t}\right) \in A_{i}$
for each history h_{t}
i.e. $a_{i}(t)=s_{i}\left(h_{t}\right)$

Payoffs

Assume payoff =sum of stage game payoffs

$$
\Pi_{i}(\mathrm{~s})=\sum_{t=0}^{K-1} P_{i}\left(s_{1}\left(h_{t}\right), \ldots, s_{N}\left(h_{t}\right)\right)
$$

Example: Prisoner's dilemma

Recall the Prisoner's dilemma:

	Player 1	
Player 2	defect	cooperate
defect	$(1,1)$	$(4,0)$
cooperate	$(0,4)$	$(2,2)$

Example: Prisoner's dilemma

Two volunteers
Five rounds
No communication allowed!

Round	1	2	3	4	5	Total
Player 1	1	1	1	1	1	5
Player 2	1	1	1	1	1	5

SPNE

Suppose \mathbf{a}^{NE} is a stage game NE.
Any such NE gives a SPNE:
Player i plays $a_{i}{ }^{\mathrm{NE}}$ at every stage, regardless of history.

Question: Are there any other SPNE?

SPNE

How do we find SPNE of $G(K)$?

Observe:

Subgame starting after history h_{t} is identical to $G(K-t)$

SPNE: Unique stage game NE

Suppose G has a unique NE a ${ }^{\mathrm{NE}}$

Then regardless of period K history h_{K}, last stage has unique $\mathrm{NE} \mathbf{a}^{\mathrm{NE}}$
\Rightarrow At SPNE, $s_{i}\left(h_{K}\right)=a_{i}{ }^{\mathrm{NE}}$

SPNE: Backward induction

At stage $K-1$, given $\mathrm{s}_{-i}(\cdot)$, player i chooses $s_{i}\left(h_{K-1}\right)$ to maximize:

$$
P_{i}\left(s_{i}\left(h_{K-1}\right), \mathbf{s}_{-i}\left(h_{K-1}\right)\right)+P_{i}\left(\mathbf{s}\left(h_{K}\right)\right)
$$

payoff at stage $K-1 \quad$ payoff at stage K

SPNE: Backward induction

At stage $K-1$, given $\mathrm{s}_{-i}(\cdot)$, player i chooses $s_{i}\left(h_{K-1}\right)$ to maximize:

$$
P_{i}\left(s_{i}\left(h_{K-1}\right), \mathbf{s}_{-i}\left(h_{K-1}\right)\right)+P_{i}\left(\mathbf{a}^{N E}\right)
$$

payoff at stage $K-1 \quad$ payoff at stage K

We know: at last stage, \mathbf{a}^{NE} is played.

SPNE: Backward induction

At stage $K-1$, given $s_{-i}(\cdot)$, player i chooses $s_{i}\left(h_{K-1}\right)$ to maximize:
$P_{i}\left(s_{i}\left(h_{K-1}\right), \mathbf{s}_{-i}\left(h_{K-1}\right)\right)$
payoff at stage $K-1$
\Rightarrow Stage game NE again!

SPNE: Conclusion

Theorem:

If stage game has unique $N E a^{N E}$, then finitely repeated game has unique SPNE:

$$
s_{i}\left(h_{t}\right)=a_{i}{ }^{\mathrm{NE}} \text { for all } h_{t}
$$

Example: Prisoner's dilemma

Moral: "Cooperate" should never be played.

Axel rod's tournament (1980):

Winning strategy was "tit for tat":
Cooperate if and only if
your opponent did so at the last stage

SPNE: Multiple stage game NE

Note:
If multiple NE exist for stage game NE, there may exist SPNE where actions are played that appear in no stage game NE
(See Gibbons, 2.3.A)

Infinitely repeated games

- History, strategy definitions same as finitely repeated games
- Payoffs:

Sum might not be finite!

Discounting

Define payoff as:
$\Pi_{i}(\mathbf{s})=(1-\delta) \sum_{t=0}^{\infty} \delta^{t} P_{i}\left(s_{1}\left(h_{t}\right), \ldots, s_{N}\left(h_{t}\right)\right)$
i.e., discounted sum of stage game payoffs

This game is denoted $G(\delta, \infty)$
(Note: $(1-\delta)$ is a normalization)

Discounting

Two interpretations:

1. Future payoffs worth less than today's payoffs

2. Total \#of stages is a geometric random variable

Folk theorems

- Major problem with infinitely repeated games:

If players are patient enough, SPNE can achieve "any" reasonable payoffs.

Prisoner's dilemma

Consider the following strategies, (s_{1}, s_{2}):

1. Play C at first stage.
2. If $h_{t}=((\mathrm{C}, \mathrm{C}), \ldots,(\mathrm{C}, \mathrm{C}))$, then play C at stage t.
Otherwise play D.
i.e., punish the other player for defecting

Prisoner's dilemma

Note: $G(\delta, \infty)$ is stationary

Case 1: Consider any subgame where at least one player has defected in h_{t}.

Then (D, D) played forever.
This is NE for subgame, since (D, D) is stage game $N E$.

Prisoner's dilemma

Step 2: \quad Suppose $h_{t}=($ (C, C), .., (C, C)).

Player 1's options:
(a) Follow $s_{1} \quad \Rightarrow$ play C forever
(b) Deviate at time $t \Rightarrow$ play D forever

Prisoner's dilemma

Given s_{2} :
Playing C forever gives payoff:
$(1-\delta)\left(P_{1}(\mathrm{C}, \mathrm{C})+\delta P_{1}(\mathrm{C}, \mathrm{C})+\ldots\right)=P_{1}(\mathrm{C}, \mathrm{C})$
Playing D forever gives payoff:

$$
\begin{aligned}
& (1-\delta)\left(P_{1}(\mathrm{D}, \mathrm{C})+\delta P_{1}(\mathrm{D}, \mathrm{D})+\ldots\right) \\
& =(1-\delta) P_{1}(\mathrm{D}, \mathrm{C})+\delta P_{1}(\mathrm{D}, \mathrm{D})
\end{aligned}
$$

Prisoner's dilemma

So cooperate if and only if:

$$
P_{1}(\mathrm{C}, \mathrm{C}) \geq(1-\delta) P_{1}(\mathrm{D}, \mathrm{C})+\delta P_{1}(\mathrm{D}, \mathrm{D})
$$

Note: if $P_{1}(\mathrm{C}, \mathrm{C})>P_{1}(\mathrm{D}, \mathrm{D})$, then this is always true for δ close to 1
Conclude:
If δ close to 1 , then $\left(s_{1}, s_{2}\right)$ is an SPNE

Prisoner's dilemma

In our game:

Need $2 \geq(1-\delta) 4+\delta \quad \Rightarrow \quad \delta \geq 2 / 3$

So cooperation can be sustained if time horizon is finite but uncertain.

Trigger strategies

In a (Nash) trigger strategy for player i :

1. Play a_{i} at first stage.
2. If $h_{t}=(\mathbf{a}, . ., \mathbf{a})$,
then play a_{i} at stage t.
Otherwise play $a_{i}{ }^{\mathrm{NE}}$.

Trigger strategies

If a Pareto dominates \mathbf{a}^{NE}, trigger strategies will be an SPNE for large enough δ
Formally: need
$P_{i}(\mathbf{a})>(\mathbf{1}-\delta) P_{i}\left(a_{i}{ }^{\prime}, \mathbf{a}_{-i}\right)+\delta P_{i}\left(\mathbf{a}^{\mathrm{NE}}\right)$
for all players i and actions $a_{i}{ }^{\prime}$.

Achievable payoffs

Achievable payoffs:
$T=$ Convex hull of $\left\{\left(P_{1}(\mathbf{a}), P_{2}(\mathbf{a})\right): a_{i} \in S_{i}\right\}$ e. g. , in Prisoner's Dilemma:

Achievable payoffs and SPNE

A key result in repeated games:

Any "reasonable" achievable payoff can be realized in an SPNE of the repeated game, if players are patient enough.
Simple proof: generalize prisoner's dilemma.

Randomization

- To generalize, suppose before stage t all players observe i.i.d. uniform r.v. U_{t}
- History:

$$
h_{t}=\left(\mathbf{a}(0), \ldots, \mathbf{a}(t-1), U_{0}, \ldots, U_{t}\right)
$$

- Players can use U_{t} to coordinate strategies at stage t

Randomization

E.g., suppose players want to achieve
$\mathbf{P}=\alpha \mathbf{P}(\mathbf{a})+(\mathbf{1}-\alpha) \mathbf{P}\left(\mathbf{a}^{\prime}\right)$

If $U_{t} \leq \alpha$: Player i plays a_{i}
If $U_{t}>\alpha$: Player i plays $a_{i}{ }^{\prime}$

We'll call this the \mathbf{P}-achieving action for i. (Uniquely defined for all $\mathbf{P} \in T$.)

Randomization

E. g. , Prisoner's Dilemma

Let $\mathbf{P}=(3,1)$.
P-achieving actions:
Player 1 plays C if $U_{t} \leq 1 / 2$ and Dif $U_{t}>1 / 2$
Player 2 plays C if $U_{t} \leq 1 / 2$ and C if $U_{t}>1 / 2$

Randomization and triggering

So now suppose $\mathbf{P} \in T$ and:

$$
P_{i}>P_{i}\left(\mathbf{a}^{\mathrm{NE}}\right) \text { for all } i
$$

Trigger strategy:
Punish forever (by playing $a_{i}{ }^{\mathrm{NE}}$) if opponent deviates from \mathbf{P}-achieving action

Randomization and triggering

Both players using this trigger strategy is again an SPNE for large enough δ.
Formally: need
(1- δ) $P_{i}\left(p_{i}, \mathbf{p}_{-i}\right)+\delta P_{i}$
$>(1-\delta) P_{i}\left(a_{i}{ }^{\prime}, \mathbf{p}_{-i}\right)+\delta P_{i}\left(\mathbf{a}^{\mathrm{NE}}\right)$
for all players i and actions $a_{i}{ }^{\prime}$.
(Here p is \mathbf{P}-achieving action for player i, and
\mathbf{p}_{-i} is \mathbf{P}-achieving action vector for all other players.)

Randomization and triggering

Both players using this trigger strategy is again an SPNE for large enough δ.
Formally: need
(1- δ) $P_{i}\left(p_{i}, \mathbf{p}_{-i}\right)+\delta P_{i}$
$>(1-\delta) P_{i}\left(a_{i}{ }^{\prime}, \mathbf{p}_{-i}\right)+\delta P_{i}\left(\mathbf{a}^{\mathrm{NE}}\right)$
for all players i and actions $a_{i}{ }^{\prime}$.
(At time t :
LHS is payoff if player i does not deviate after seeing U_{t}; RHS is payoff if player i deviates to $a_{i}{ }^{\prime}$ after seeing U_{t})

Folk theorem

Theorem (Friedman, 1971):
Fix a Nash equilibrium \mathbf{a}^{NE}, and $\mathbf{P} \in T$ such that

$$
P_{i}>P_{i}\left(\mathbf{a}^{\mathrm{NE}}\right) \text { for all } i
$$

Then for large enough δ, there exists an SPNE s such that:

$$
\Pi_{i}(\mathbf{s})=P_{i}
$$

Minimax payoffs

What is the minimum payoff
Player 1 can guarantee himself?

$$
\min _{a_{2} \in A_{2}}\left\{\max _{a_{1} \in A_{1}} P_{1}\left(a_{1}, a_{2}\right)\right\}
$$

Minimax payoffs

What is the minimum payoff
Player 1 can guarantee himself?

$$
\min _{a_{2} \in A_{2}}\left\{\max _{a_{1} \in A_{1}} P_{1}\left(a_{1}, a_{2}\right)\right\}
$$

Given a_{2}, this is the highest payoff
player 1 can get...

Minimax payoffs

What is the minimum payoff
Player 1 can guarantee himself?

$$
\min _{a_{2} \in A_{2}}\left\{\max _{a_{1} \in A_{1}} P_{1}\left(a_{1}, a_{2}\right)\right\}
$$

..so Player 1 can guarantee
himself this payoff if he knows how Player 2 is punishing him

Minimax payoffs

What is the minimum payoff Player 1 can guarantee himself?

$$
\min _{a_{2} \in A_{2}}\left\{\max _{a_{1} \in A_{1}} P_{1}\left(a_{1}, a_{2}\right)\right\}
$$

This is m_{1}, the minimax value of Player 1.

Generalization

Theorem (Fudenberg and Maskin, 1986): Folk theorem holds for all \mathbf{P} such that $P_{i}>m_{i}$ for all i
(Technical note:
This result requires that dimension of $T=$ \#of players)

Finite vs. infinite

Theorem (Benoit and Krishna, 1985):
Assume: for each i, we can find two NE $\mathbf{a}^{\mathrm{NE}}, \mathbf{a}^{\mathrm{NE}}$ such that $P_{i}\left(\mathbf{a}^{\mathrm{NE}}\right)>P_{i}\left(\mathbf{a}^{\mathrm{NE}}\right)$

Then as $K \rightarrow \infty$, set of SPNE payoffs of $G(K)$ approaches $\left\{\mathbf{P} \in T: P_{i}>m_{i}\right\}$
(Same technical note as Fudenberg-Maskin applies)

Finite vs. infinite

In the unique Prisoner's Dilemma NE, only one NE exists
\Rightarrow Benoit-Krishna result fails

Note at Prisoner's Dilemma NE, each player gets minimax value.

Summary

Repeated games are a simple way to model interaction over time.
(1) In general, too many SPNE \Rightarrow not very good predictive model
(2) However, can gain insight from structure of SPNE strategies

MS\&E 246: Lecture 11
 Concluding remarks on subgame perfection

Ramesh J ohari

Dynamic games

In our discussion of dynamic games of complete information, we studied two main types:

- Perfect information
- Imperfect information

In both cases, subgame perfect NE emerged as a natural way to capture "sequential rationality" (or credibility).

Possible problems

However, subgame perfection can give rise to two possible issues.
In some cases, it is overly restrictive as a predictive tool:
there are " not enough" SPNE.
In some cases, it is not useful as a predictive tool:
there are too many SPNE.

SPNE: overly restrictive?

Consider the following game:

(This is called the "centipede" game.)

SPNE: overly restrictive?

- In last information set, player 2 prefers to "stop" instead of "continue"
- Inductively, in each information set each player prefers to "stop" instead of "continue"
- Equilibrium payoffs: $(1,1)$
- Is this a reasonable prediction of play?

SPNE: overly restrictive?

The centipede game reveals a key flaw in the definition of SPNE:

If play ever reaches a subgame off the equilibrium path of play, then rationality must have failed already. But SPNE assumes rational behavior in every subgame!

SPNE: not restrictive enough?

- In repeated games, we saw the folk theorem(s): with enough patience, any individually rational payoffs can be sustained by an SPNE.
- Too many equilibria for predictive use

SPNE: not restrictive enough?

Other problems can occur in situations where there are " not enough subgames" to rule out equilibria.

SPNE: not restrictive enough?

- Two firms
- First firm decides if/ how to enter
- Second firm can choose to "fight"

Entry example

Note that this game only has one subgame.
Thus SPNE are any NE of strategic form.
Firm 2

Firm 1

	L	R
Entry $_{1}$	$(-1,-1)$	$(3,0)$
Entry $_{2}$	$(-1,-1)$	$(2,1)$
Exit	$(0,2)$	$(0,2)$

Entry example

Two pure NE of strategic form: (Entry ${ }_{1}, \mathrm{R}$) and (Exit, L)

Firm 2

Firm 1

	L	R
Entry $_{1}$	$(-1,-1)$	$(3,0)$
Entry $_{2}$	$(-1,-1)$	$(2,1)$
Exit	$(0,2)$	$(0,2)$

SPNE: not restrictive enough?

But firm 1 should "know" that if it chooses to enter, firm 2 will never "fight."

SPNE: not restrictive enough?

So in this situation, there are again too many SPNE.

SPNE: not restrictive enough?

A solution to the problem of the entry game is to include beliefs as part of the solution concept:
Firm 2 should never fight, regardless of what it believes firm 1 played.
(We will study such an approach in the last part of the course.)

MS\&E 246: Lecture 12
Static games of
incomplete information

Ramesh J ohari

Incomplete information

- Complete information means the entire structure of the game is common knowledge
- Incomplete information means "anything else"

Cournot revisited

Consider the Cournot game again:

- Two firms ($N=2$)
- Cost of producing $s_{n}: c_{n} s_{n}$
- Demand curve:

$$
\text { Price }=P\left(s_{1}+s_{2}\right)=a-b\left(s_{1}+s_{2}\right)
$$

- Payoffs:

$$
\text { Profit }=\Pi_{n}\left(s_{1}, s_{2}\right)=P\left(s_{1}+s_{2}\right) s_{n}-c_{n} s_{n}
$$

Cournot revisited

Suppose c_{i} is known only to firm i.
Incomplete information:
Payoffs of firms are not common knowledge.

How should firm i reason about what it expects the competitor to produce?

Beliefs

A first approach:
Describe firm 1's beliefs about firm 2.
Then need firm 2's beliefs about firm 1's beliefs...

And firm 1's beliefs about firm 2's beliefs about firm 1's beliefs...

Rapid growth of complexity!

Harsanyi's approach

Harsanyi made a key breakthrough in the analysis of incomplete information games:
He represented a static game of incomplete information as a dynamic game of complete but imperfect information.

Harsanyi's approach

- Nature chooses (c_{1}, c_{2}) according to some probability distribution.
- Firm i now knows c_{i}, but opponent only knows the distribution of c_{i}.
- Firms maximize expected payoff.

Harsanyi's approach

All firms share the same beliefs about incomplete information, determined by the common prior.

Intuitively:
Nature determines " who we are" at time 0, according to a distribution that is common knowledge.

Bayesian games

In a Bayesian game, player i 's preferences are determined by his type $\theta_{i} \in \mathbf{T}_{i}$; T_{i} is the type space for player i.

When player i has type θ_{i}, his payoff function is: $\quad \Pi_{i}\left(\mathrm{~s} ; \theta_{i}\right)$

Bayesian games

A Bayesian game with N players is a dynamic game of $N+1$ stages.

Stage 0: Nature moves first, and chooses a type θ_{i} for each player i, according to some joint distribution $\mathrm{P}\left(\theta_{1}, \ldots, \theta_{N}\right)$ on $\mathrm{T}_{1} \times \cdots \times \mathrm{T}_{N}$.

Bayesian games

Player i learns his own type θ_{i}, but not the types of other players.

Stage i : Player i chooses an action from S_{i}.

After stage N : payoffs are realized.

Bayesian games

An alternate, equivalent interpretation:

1) Nature chooses players' types.
2) All players simultaneously choose actions.
3) Payoffs are realized.

Bayesian games

- How many subgames are there?
- How many information sets does player i have?
- What is a strategy for player i ?

Bayesian games

- How many subgames are there?

ONE - the entire game.

- How many information sets does player i have?

ONE per type θ_{i}.

- What is a strategy for player i ?

A function from $\mathrm{T}_{i} \rightarrow S_{i}$.

Bayesian games

One subgame \Rightarrow
SPNE and NE are identical concepts.

A Bayesian equilibrium
(or Bayes-Nash equilibrium)
is a NE of this dynamic game.

Expected payoffs

How do players reason about uncertainty regarding other players' types?
They use expected payoffs.
Given $\mathrm{s}_{-i}(\cdot)$, player i chooses $a_{i}=s_{i}\left(\theta_{i}\right)$ to maximize
$\mathrm{E}\left[\Pi_{i}\left(a_{i}, \mathrm{~s}_{-i}\left(\theta_{-i}\right) ; \theta_{i}\right) \mid \theta_{i}\right]$

Bayesian equilibrium

Thus $s_{1}(\cdot), \ldots, s_{N}(\cdot)$ is a Bayesian equilibrium if and only if:
$s_{i}\left(\theta_{i}\right) \in \arg \max _{a_{i} \in S_{i}} \mathrm{E}\left[\Pi_{i}\left(a_{i}, \mathbf{s}_{-i}\left(\theta_{-i}\right) ; \theta_{i}\right) \mid \theta_{i}\right]$ for all θ_{i}, and for all players i.
[Notation: $\left.\mathrm{s}_{-i}\left(\theta_{-i}\right)=\left(s_{1}\left(\theta_{1}\right), \ldots, s_{i-1}\left(\theta_{i-1}\right), s_{i+1}\left(\theta_{i+1}\right), \ldots, s_{N}\left(\theta_{N}\right)\right)\right]$

Bayesian equilibrium

The conditional distribution $\mathrm{P}\left(\theta_{-i} \mid \theta_{i}\right)$ is called player i 's belief.
Thus in a Bayesian equilibrium, players maximize expected payoffs given their beliefs.
[Note: Beliefs are found using Bayes' rule:

$$
\left.\mathrm{P}\left(\theta_{-i} \mid \theta_{i}\right)=\mathrm{P}\left(\theta_{1}, \ldots, \theta_{N}\right) / \mathrm{P}\left(\theta_{i}\right)\right]
$$

Bayesian equilibrium

Since Bayesian equilibrium is a NE of a certain dynamic game of imperfect information,
it is guaranteed to exist
(as long as type spaces T_{i} are finite and action spaces S_{i} are finite).

Cournot revisited

Back to the Cournot example:
Let's assume c_{1} is common knowledge, but firm 1 does not know c_{2}.
Nature chooses c_{2} according to:
$c_{2}=c_{\mathrm{H}}, \mathrm{w} /$ prob. p
$=c_{\mathrm{L}}, \mathrm{w} /$ prob. $1-p$
(where $c_{\mathrm{H}}>c_{\mathrm{L}}$)

Cournot revisited

These are also informally called games of asymmetric information:
Firm 2 has information that firm 1 does not have.

Cournot revisited

- The type of each firm is their marginal cost of production, c_{i}.
- Note that c_{1}, c_{2} are independent.
- Firm 1's belief:

$$
\mathrm{P}\left(c_{2}=c_{\mathrm{H}} \mid c_{1}\right)=1-\mathrm{P}\left(c_{2}=c_{\mathrm{L}} \mid c_{1}\right)=p
$$

- Firm 2's belief: Knows c_{1} exactly

Cournot revisited

- The strategy of firm 1 is the quantity s_{1}.
- The strategy of firm 2 is a function:
$s_{2}\left(c_{\mathrm{H}}\right)$: quantity produced if $c_{2}=c_{\mathrm{H}}$
$s_{2}\left(c_{\mathrm{L}}\right)$: quantity produced if $c_{2}=c_{\mathrm{L}}$

Cournot revisited

We want a NE of the dynamic game.
Given s_{1} and c_{2}, Firm 2 plays a best response.
Thus given s_{1} and c_{2}, Firm 2 produces:

$$
R_{2}\left(s_{1}\right)=\left[\frac{a-c_{2}}{2 b}-\frac{s_{1}}{2}\right]^{+}
$$

Cournot revisited

Given $s_{2}(\cdot)$ and c_{1},
Firm 1 maximizes expected payoff.
Thus Firm 1 maximizes:
$\mathrm{E}\left[\Pi_{1}\left(s_{1}, s_{2}\left(c_{2}\right) ; c_{1}\right) \mid c_{1}\right]=$
$\left[p P\left(s_{1}+s_{2}\left(c_{\mathrm{H}}\right)\right)+(1-p) P\left(s_{1}+s_{2}\left(c_{\mathrm{L}}\right)\right)\right] s_{1}-c_{1} s_{1}$

Cournot revisited

- Recall demand is linear: $P(Q)=a-b Q$
- So expected payoff to firm 1 is:
$\left[a-b\left(s_{1}+p s_{2}\left(c_{\mathrm{H}}\right)+(1-p) s_{2}\left(c_{\mathrm{L}}\right)\right)\right] s_{1}-c_{1} s_{1}$
- Thus firm 1 plays best response to expected production of firm 2.

$$
R_{1}\left(s_{2}\right)=\left[\frac{a-c_{1}}{2 b}-\frac{p s_{2}\left(c_{H}\right)+(1-p) s_{2}\left(c_{L}\right)}{2}\right]^{+}
$$

Cournot revisited: equilibrium

- A Bayesian equilibrium has 3 unknowns:
$s_{1}, s_{2}\left(c_{\mathrm{H}}\right), s_{2}\left(c_{\mathrm{L}}\right)$
- There are 3 equations:

Best response of firm 1 given $s_{2}\left(c_{\mathrm{H}}\right), s_{2}\left(c_{\mathrm{L}}\right)$
Best response of firm 2 given s_{1},
when type is c_{H}
Best response of firm 2 given s_{1}, when type is c_{L}

Cournot revisited: equilibrium

- Assume all quantities are positive at BNE (can show this must be the case)
- Solution:

$$
\begin{aligned}
& s_{1}=\left[a-2 c_{1}+p c_{\mathrm{H}}+(1-p) c_{\mathrm{L}}\right] / 3 \\
& s_{2}\left(c_{\mathrm{H}}\right)=\left[a-2 c_{\mathrm{H}}+c_{1}\right] / 3+(1-p)\left(c_{\mathrm{H}}-c_{\mathrm{L}}\right) / 6 \\
& s_{2}\left(c_{\mathrm{L}}\right)=\left[a-2 c_{\mathrm{L}}+c_{1}\right] / 3-p\left(c_{\mathrm{H}}-c_{\mathrm{L}}\right) / 6
\end{aligned}
$$

Cournot revisited: equilibrium

When $p=0$, complete information: Both firms know $c_{2}=c_{\mathrm{L}} \Rightarrow \operatorname{NE}\left(s_{1}{ }^{(0)}, s_{2}{ }^{(0)}\right)$
When $p=1$, complete information:
Both firms know $c_{2}=c_{\mathrm{H}} \Rightarrow \operatorname{NE}\left(s_{1}{ }^{(1)}, s_{2}{ }^{(1)}\right)$
For $0<p<1$, note that:

$$
s_{2}\left(c_{\mathrm{L}}\right)<s_{2}{ }^{(0)}, \quad s_{2}\left(c_{\mathrm{H}}\right)>s_{2}^{(1)}, \quad s_{1}^{(0)}<s_{1}<s_{1}^{(1)}
$$

Why?

Coordination game

Consider coordination game with incomplete information:

Coordination game

t_{1}, t_{2} are independent uniform r.v.'s on [0, x].

Player i learns t_{i}, but not t_{-i}.

$$
\text { Player } 2
$$

Coordination game

Types: t_{1}, t_{2}
Beliefs:
Types are independent, so player i believes t_{-i} is uniform[$\left.0, x\right]$
Strategies:
Strategy of player i is a function $s_{i}\left(t_{i}\right)$

Coordination game

We'll search for a specific form of Bayesian equilibrium:
Assume each player i has a threshold c_{i}, such that the strategy of player 1 is:

$$
s_{1}\left(t_{1}\right)=\mathrm{l} \text { if } t_{1}>c_{1} ;=r \text { if } t_{1} \leq c_{1} .
$$ and the strategy of player 2 is:

$$
s_{2}\left(t_{2}\right)=\mathrm{R} \text { if } t_{2}>c_{2} ;=\mathrm{L} \text { if } t_{2} \leq c_{2}
$$

Coordination game

Given $s_{2}(\cdot)$ and t_{1}, player 1 maximizes expected payoff:
If player 1 plays I:

$$
\begin{aligned}
& \mathrm{E}\left[\Pi_{1}\left(\mathrm{I}, s_{2}\left(t_{2}\right) ; t_{1}\right) \mid t_{1}\right]= \\
& \quad\left(2+t_{1}\right) \cdot \mathrm{P}\left(t_{2} \leq c_{2}\right)+0 \cdot \mathrm{P}\left(t_{2}>c_{2}\right)
\end{aligned}
$$

If player 1 plays r :

$$
\begin{aligned}
& \mathrm{E}\left[\Pi_{1}\left(\mathrm{r}, s_{2}\left(t_{2}\right) ; t_{1}\right) \mid t_{1}\right]= \\
& \quad \mathrm{O} \cdot \mathrm{P}\left(t_{2} \leq c_{2}\right)+1 \cdot \mathrm{P}\left(t_{2}>c_{2}\right)
\end{aligned}
$$

Coordination game

Given $s_{2}(\cdot)$ and t_{1}, player 1 maximizes expected payoff:
If player 1 plays I:

$$
\begin{aligned}
& \mathrm{E}\left[\Pi_{1}\left(1, s_{2}\left(t_{2}\right) ; t_{1}\right) \mid t_{1}\right]= \\
& \\
& \quad\left(2+t_{1}\right)\left(c_{2} / x\right)
\end{aligned}
$$

If player 1 plays r :

$$
\begin{aligned}
& \mathrm{E}\left[\Pi_{1}\left(\mathrm{r}, s_{2}\left(t_{2}\right) ; t_{1}\right) \mid t_{1}\right]= \\
& \quad 1-c_{2} / x
\end{aligned}
$$

Coordination game

So player 1 should play I if and only if:

$$
t_{1}>x / c_{2}-3
$$

Similarly:
Player 2 should play R if and only if:

$$
t_{2}>x / c_{1}-3
$$

Coordination game

So player 1 should play I if and only if:

$$
t_{1}>x / c_{2}-3
$$

Similarly:
Player 2 should play R if and only if:

$$
t_{2}>x / c_{1}-3
$$

The right hand sides must be the thresholds!

Coordination game: equilibrium

Solve: $c_{1}=x / c_{2}-3, c_{2}=x / c_{1}-3$
Solution:

$$
c_{i}=\frac{\sqrt{9+4 x}-3}{2}
$$

Thus one Bayesian equilibrium is to play strategies $s_{1}(\cdot), s_{2}(\cdot)$, with thresholds c_{1}, c_{2} (respectively).

Coordination game: equilibrium

What is the unconditional probability that player 1 plays r ?
$=c_{1} / x \rightarrow 1 / 3$ as $x \rightarrow 0$
Thus as $x \rightarrow 0$, the unconditional distribution of play matches the mixed strategy NE of the complete information game.

Purification

This phenomenon is one example of purification:
recovering a mixed strategy NE via
Bayesian equilibrium of a perturbed game.
Harsanyi showed mixed strategy NE can "almost always" be purified in this way.

Summary

To find Bayesian equilibria, provide strategies $s_{1}(\cdot), \ldots, s_{N}(\cdot)$ where:
For each type θ_{i}, player i chooses $s_{i}\left(\theta_{i}\right)$ to maximize expected payoff given his belief $\mathrm{P}\left(\theta_{-i} \mid \theta_{i}\right)$.

MS\&E 246: Lecture 13
Auctions: Imperfect information

Ramesh J ohari

Auctions: Theory

- Basic definitions
- Revelation principle
- Truthtelling lemma
- Payoff equivalence theorem
- Revenue equivalence theorem
- Symmetric BNE
- Examples next lecture

A basic auction model

- Assume two players want the same item
- Type of player i : valuation $v_{i} \geq 0$ Assume: $\mathrm{P}\left(v_{i} \leq x_{i}\right)=\Phi_{i}\left(x_{i}\right)$
F_{i} : continuous dist. on [0,V], with pdf ϕ_{i}
e.g. uniform: $\phi_{i}\left(x_{i}\right)=1 / V$, for $x_{i} \in[0, V]$

A basic auction model

Payoffs depend on winning and payment

- Let $w=i$ if player i wins
- Let $p_{i}=$ payment of player i
- Payoff to player i of type v_{i} :

$$
\Pi_{i}\left(w, p_{i} ; v_{i}\right)= \begin{cases}v_{i}-p_{i}, & \text { if } w=i \\ 0, & \text { otherwise }\end{cases}
$$

A basic auction model

An auction mechanism is:

- action set for each player, B_{i}
- mapping from actions to:
winner:

$$
w\left(b_{1}, b_{2}\right) \in\{1,2\}
$$

payments: $\quad p_{i}\left(b_{1}, b_{2}\right) \in[0, \infty), \quad i=1,2$

Payoff to i :

$$
\begin{aligned}
& Q_{i}\left(b_{1}, b_{2} ; v_{i}\right)= \\
& \quad \Pi_{i}\left(w(\mathbf{b}), p_{i}(\mathbf{b}) ; v_{i}\right)
\end{aligned}
$$

Example: Second price auction

- Action space (bids): $B_{i}=[0, \infty), \quad i=1,2$
- Winner:

$$
\begin{aligned}
w\left(b_{1}, b_{2}\right) & =1 \text { if } b_{1}>b_{2} \\
& =2 \text { if } b_{1} \leq b_{2}
\end{aligned}
$$

- Payments: $\quad p_{i}\left(b_{1}, b_{2}\right)=b_{-i}$ if $w\left(b_{1}, b_{2}\right)=i$; $=0$ otherwise

Bayes-Nash equilibrium

Strategy of $i: s_{i}:[0, \infty) \rightarrow B_{i}$
s_{1} is a Bayesian best response to s_{2} if:

$$
\begin{aligned}
& \int_{0}^{\infty} Q_{1}\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right) ; v_{1}\right) \phi_{2}\left(v_{2}\right) d v_{2} \\
& \quad \geq \int_{0}^{\infty} Q_{1}\left(b_{1}, s_{2}\left(v_{2}\right) ; v_{1}\right) \phi_{2}\left(v_{2}\right) d v_{2}
\end{aligned}
$$

for all $b_{1} \in B_{1}$, and $v_{1} \geq 0$
(similar definition for player 2)

Bayes-Nash equilibrium

Strategy of $i: s_{i}:[0, \infty) \rightarrow B_{i}$
s_{1} is a Bayesian best response to s_{2} if:
$\mathrm{E}\left[Q_{1}\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right) ; v_{1}\right) \mid v_{1}\right] \geq$

$$
\mathbf{E}_{v_{2}}\left[Q_{1}\left(b_{1}, s_{2}\left(v_{2}\right) ; v_{1}\right) \mid v_{1}\right]
$$

for all $b_{1} \in B_{1}$, and $v_{1} \geq 0$
(Similarly for player 2)

Bayes-Nash equilibrium

$\left(s_{1}, s_{2}\right)$ is a BNE if:

- s_{1} is a Bayesian best response to s_{2}
- s_{2} is a Bayesian best response to s_{1}

Second price auction and BNE

We start by finding a BNE for the second price auction.

Recall: Given type v_{i}, truthtelling is a weak dominant action for i :

$$
d_{i}\left(v_{i}\right)=v_{i}
$$

Dominant actions and BNE

Consider any Bayesian game with type spaces T_{1}, T_{2}.
Suppose for each type t_{i}, player i has a (weakly) dominant action $d_{i}\left(t_{i}\right)$:
$Q_{i}\left(d_{i}\left(t_{i}\right), a_{-i} ; t_{i}\right) \geq Q_{i}\left(a_{i}, a_{-i} ; t_{i}\right)$
for any other action a_{i}

Dominant actions and BNE

Then $\left(d_{1}(\cdot), d_{2}(\cdot)\right)$ is a BNE.

We know that for each player i :
$Q_{i}\left(d_{i}\left(t_{i}\right), d_{-i}\left(t_{-i}\right) ; t_{i}\right)$

$$
\geq Q_{i}\left(a_{i}, d_{-i}\left(t_{-i}\right) ; t_{i}\right)
$$

for all types t_{i}, t_{-i}, and actions a_{i}.

Dominant actions and BNE

Then $\left(d_{1}(\cdot), d_{2}(\cdot)\right)$ is a BNE.

Take expectations:
$\mathrm{E}\left[Q_{i}\left(d_{i}\left(t_{i}\right), d_{-i}\left(t_{-i}\right) ; t_{i}\right) \mid t_{i}\right]$

$$
\geq \mathrm{E}\left[Q_{i}\left(a_{i}, d_{-i}\left(t_{-i}\right) ; t_{i}\right) \mid t_{i}\right]
$$

for all types t_{i}, and actions a_{i}.
This is exactly the condition for a BNE.

Second price auction and BNE

Conclusion:
In the second price auction, truthtelling is a BNE :

$$
s_{i}\left(v_{i}\right)=d_{i}\left(v_{i}\right)=v_{i}
$$

(Note that this requires a dominant action for every possible type!)

Incentive compatibility

Auctions where truthtelling is a BNE, i.e., where:

$$
\begin{aligned}
& \text { 1. } B_{i}=[0, \infty) \text { for } i=1,2 \text {, and } \\
& \text { 2. } s_{i}\left(v_{i}\right)=v_{i} \text { for } i=1,2 \text { is a BNE }
\end{aligned}
$$

are called incentive compatible.

Revelation principle

The revelation principle shows how to create an incentive compatible auction from any auction with a BNE.

The revelation principle

Given: $B_{1}, B_{2}, w(\cdot), p_{1}(\cdot), p_{2}(\cdot)$
and a BNE $s_{1}(\cdot), s_{2}(\cdot)$

Create a new auction with:

$$
\begin{aligned}
& B_{1}=B_{2}=[0, \infty) \\
& w\left(b_{1}, b_{2}\right)=w\left(s_{1}\left(b_{1}\right), s_{2}\left(b_{2}\right)\right) \\
& p_{i}\left(b_{1}, b_{2}\right)=p_{i}\left(s_{1}\left(b_{1}\right), s_{2}\left(b_{2}\right)\right), \quad i=1,2
\end{aligned}
$$

The revelation principle

At the BNE of the original auction:

The revelation principle

In the new auction:
Ask players to declare valuation.

The revelation principle

Theorem:
The new auction is incentive compatible.

Further, the truthtelling strategies
in the new auction give exactly
the same outcomes as
the BNE of the original auction.

The revelation principle: Proof

For all v_{1},
$\mathrm{E}\left[Q_{1}\left(v_{1}, v_{2} ; v_{1}\right) \mid v_{1}\right]$

$$
\begin{aligned}
& =\mathrm{E}\left[Q_{1}\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right) ; v_{1}\right) \mid v_{1}\right] \\
& \geq \mathrm{E}\left[Q_{1}\left(b_{1}, s_{2}\left(v_{2}\right) ; v_{1}\right) \mid v_{1}\right] \\
& \quad \text { for all } b_{1} \in B_{1}
\end{aligned}
$$

The revelation principle: Proof

For all v_{1},
$\mathrm{E}\left[Q_{1}\left(v_{1}, v_{2} ; v_{1}\right) \mid v_{1}\right]$

$$
\begin{aligned}
& =\mathrm{E}\left[Q_{1}\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right) ; v_{1}\right) \mid v_{1}\right] \\
& \geq \mathrm{E}\left[Q_{1}\left(s_{1}\left(b_{1}\right), s_{2}\left(v_{2}\right) ; v_{1}\right) \mid v_{1}\right] \\
& \quad \text { for all } \underline{b}_{1} \in[0, \infty)
\end{aligned}
$$

The revelation principle: Proof

For all v_{1},
$\mathrm{E}\left[Q_{1}\left(v_{1}, v_{2} ; v_{1}\right) \mid v_{1}\right]$

$$
\begin{aligned}
& =\mathrm{E}\left[Q_{1}\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right) ; v_{1}\right) \mid v_{1}\right] \\
& \geq \mathbb{E}\left[Q_{1}\left(b_{1}, v_{2} ; v_{1}\right) \mid v_{1}\right] \\
& \quad \text { for all } \underline{b}_{1} \in[0, \infty)
\end{aligned}
$$

(Similarly for player 2)

The revelation principle: Proof

Given v_{1}, v_{2} :
Outcome at truthtelling strategies
$=\left(w\left(v_{1}, v_{2}\right), p_{1}\left(v_{1}, v_{2}\right), p_{2}\left(v_{1}, v_{2}\right)\right)$
$=\left(w\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right)\right)\right.$,
$p_{1}\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right)\right)$,
$\left.p_{2}\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right)\right)\right)$
=outcome at original BNE

The revelation principle

The new auction is called a
direct revelation mechanism (DRM).

Note:
It may have other, undesirable equilibria!!

Two useful results

For a wide range of auctions
(including first and second price),
we will show
payoff equivalence and revenue equivalence:

These auctions all have the same payoffs and auctioneer revenue at BNE.

Definitions

Suppose we are given a DRM.
Truthtelling expected payoff to player 1:
$S_{1}\left(v_{1}\right)=\mathrm{E}\left[Q_{1}\left(v_{1}, v_{2} ; v_{1}\right) \mid v_{1}\right]$
Truthtelling expected probability of winning for player 1 :

$$
\mathrm{P}_{1}\left(v_{1}\right)=\int_{0}^{\infty} I\left\{w\left(v_{1}, v_{2}\right)=1\right\} \phi_{2}\left(v_{2}\right) \mathrm{d} v_{2}
$$

The truthtelling lemma

Lemma: Truthtelling is a BNE if and only if for $i=1,2$:
(1) $S_{i}\left(v_{i}\right)=S_{i}(0)+\int_{0}^{v_{i}} \mathrm{P}_{i}(z) \mathrm{d} z$
(2) P_{i} is nondecreasing:

$$
v_{i} \geq v_{i}^{\prime} \Rightarrow \mathrm{P}_{i}\left(v_{i}\right) \geq \mathrm{P}_{i}\left(v_{i}^{\prime}\right)
$$

The truthtelling lemma: Proof

Truthtelling is a BNE if and only if:

$$
\begin{array}{r}
S_{1}\left(v_{1}\right) \geq \mathrm{E}\left[Q_{1}\left(v_{1}^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right] \\
\\
\text { for all } v_{1}^{\prime} \geq 0
\end{array}
$$

(Similarly for player 2)

The truthtelling lemma: Proof

Truthtelling is a BNE if and only if:

$$
\begin{array}{r}
S_{1}\left(v_{1}\right) \geq \mathrm{E}\left[Q_{1}\left(v_{1}^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right] \\
\\
\text { for all } v_{1}^{\prime} \geq 0
\end{array}
$$

$\mathrm{E}\left[Q_{1}\left(v_{1}{ }^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right]=$
$\int_{0}^{\infty}\left[v_{1}-p_{1}\left(v_{1}{ }^{\prime}, v_{2}\right)\right] I\left\{w\left(v_{1}{ }^{\prime}, v_{2}\right)=1\right\} \phi_{2}\left(v_{2}\right) \mathrm{d} v_{2}$

The truthtelling lemma: Proof

Truthtelling is a BNE if and only if:

$$
\begin{array}{r}
S_{1}\left(v_{1}\right) \geq \mathrm{E}\left[Q_{1}\left(v_{1}^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right] \\
\\
\text { for all } v_{1}^{\prime} \geq 0
\end{array}
$$

$\mathrm{E}\left[Q_{1}\left(v_{1}{ }^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right]=$
$\int_{0}^{\infty}\left[v_{1}-p_{1}\left(v_{1}{ }^{\prime}, v_{2}\right)\right] I\left\{w\left(v_{1}{ }^{\prime}, v_{2}\right)=1\right\} \phi_{2}\left(v_{2}\right) \mathrm{d} v_{2}$

The truthtelling lemma: Proof

Truthtelling is a BNE if and only if:

$$
\begin{array}{r}
S_{1}\left(v_{1}\right) \geq \mathrm{E}\left[Q_{1}\left(v_{1}^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right] \\
\\
\text { for all } v_{1}^{\prime} \geq 0
\end{array}
$$

$\mathrm{E}\left[Q_{1}\left(v_{1}{ }^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right]=$
$v_{1} \mathrm{P}_{1}\left(v_{1}^{\prime}\right)-$
$\int_{0}^{\infty}\left[p_{1}\left(v_{1}{ }^{\prime}, v_{2}\right)\right] I\left\{w\left(v_{1}{ }^{\prime}, v_{2}\right)=1\right\} \phi_{2}\left(v_{2}\right) \mathrm{d} v_{2}$

The truthtelling lemma: Proof

Truthtelling is a BNE if and only if:
$S_{1}\left(v_{1}\right) \geq \mathrm{E}\left[Q_{1}\left(v_{1}^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right]$
for all $v_{1}^{\prime} \geq 0$
$\mathrm{E}\left[Q_{1}\left(v_{1}{ }^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right]=$
$v_{1} \mathrm{P}_{1}\left(v_{1}{ }^{\prime}\right)-v_{1}{ }^{\prime} \mathrm{P}_{1}\left(v_{1}{ }^{\prime}\right)$
$\int_{0}^{\infty}\left[v_{1}^{\prime}-p_{1}\left(v_{1}{ }^{\prime}, v_{2}\right)\right] I\left\{w\left(v_{1}{ }^{\prime}, v_{2}\right)=1\right\} \phi_{2}\left(v_{2}\right) \mathrm{d} v_{2}$

The truthtelling lemma: Proof

Truthtelling is a BNE if and only if:

$$
\begin{array}{r}
S_{1}\left(v_{1}\right) \geq \mathrm{E}\left[Q_{1}\left(v_{1}^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right] \\
\\
\text { for all } v_{1}^{\prime} \geq 0
\end{array}
$$

$\mathrm{E}\left[Q_{1}\left(v_{1}{ }^{\prime}, v_{2} ; v_{1}\right) \mid v_{1}\right]=$
$v_{1} \mathrm{P}_{1}\left(v_{1}^{\prime}\right)-v_{1}^{\prime} \mathrm{P}_{1}\left(v_{1}^{\prime}\right)+S_{1}\left(v_{1}^{\prime}\right)$

The truthtelling lemma: Proof

Conclude:

Truthtelling is a BNE if and only if for $i=1,2$, and for all $v_{i}, v_{i}{ }^{\prime} \geq 0$:
$S_{i}\left(v_{i}\right) \geq S_{i}\left(v_{i}{ }^{\prime}\right)+\mathrm{P}_{i}\left(v_{i}{ }^{\prime}\right)\left(v_{i}-v_{i}{ }^{\prime}\right)$
i.e., S_{i} is convex.

The truthtelling lemma: Proof

Assume $v_{i}{ }^{\prime}>v_{i}$. Then:
$S_{i}\left(v_{i}\right) \geq S_{i}\left(v_{i}{ }^{\prime}\right)+\mathrm{P}_{i}\left(v_{i}{ }^{\prime}\right)\left(v_{i}-v_{i}{ }^{\prime}\right)$
$S_{i}\left(v_{i}{ }^{\prime}\right) \geq S_{i}\left(v_{i}\right)+\mathrm{P}_{i}\left(v_{i}\right)\left(v_{i}{ }^{\prime}-v_{i}\right)$
$\Rightarrow \mathrm{P}_{i}\left(v_{i}\right)\left(v_{i}{ }^{\prime}-v_{i}\right) \leq \mathrm{P}_{i}\left(v_{i}{ }^{\prime}\right)\left(v_{i}{ }^{\prime}-v_{i}\right)$
So $\mathrm{P}_{i}\left(v_{i}\right) \leq \mathrm{P}_{i}\left(v_{i}{ }^{\prime}\right) \Rightarrow \mathrm{P}_{i}$ is nondecreasing

The truthtelling lemma: Proof

If $v_{i}>v_{i}{ }^{\prime}$:

$$
\frac{S_{i}\left(v_{i}\right)-S_{i}\left(v_{i}^{\prime}\right)}{v_{i}-v_{i}^{\prime}} \geq \mathrm{P}_{i}\left(v_{i}^{\prime}\right)
$$

If $v_{i}<v_{i}{ }^{\prime}$:

$$
\frac{S_{i}\left(v_{i}\right)-S_{i}\left(v_{i}^{\prime}\right)}{v_{i}-v_{i}^{\prime}} \leq \mathrm{P}_{i}\left(v_{i}^{\prime}\right)
$$

Take $v_{i}{ }^{\prime} \uparrow v_{i}, v_{i}{ }^{\prime} \downarrow v_{i} \quad \Rightarrow \quad S_{i}{ }^{\prime}\left(v_{i}\right)=\mathrm{P}_{i}\left(v_{i}\right)$

The truthtelling lemma

How to use the truthtelling lemma:
(1) Use a BNE of an auction to create an incentive compatible DRM
(2) Apply the truthtelling lemma to characterize the original BNE

Payoff equivalence

Given two auctions with BNE such that:
-in each BNE, if $v_{i}=0$ then player i gets zero payoff; and
-in each BNE, item al ways goes to highest valuation player

Theorem: Both BNE yield the same expected payoff to each player.

Payoff equivalence: Proof

- Fix given $\operatorname{BNE}\left(s_{1}, s_{2}\right)$ of one of the auctions
- Construct incentive compatible DRM using revelation principle
- For this DRM:

$$
\begin{aligned}
& S_{i}(0)=0, \text { and } \\
& \underline{\mathrm{P}}_{i}\left(v_{i}\right)=\int_{\mathbf{0}}^{v_{i}} \phi_{-i}\left(v_{-i}\right) \mathrm{d} v_{-i}
\end{aligned}
$$

Payoff equivalence: Proof

Expected payoff to player 1 of type v_{1} : depends only on $S_{1}(0)$ and $\mathrm{P}_{1}(\cdot)$, by the truthtelling lemma
(Similarly for player 2)

Payoff equivalence: Proof

Expected payoff to player 1 of type v_{1} :
$\mathrm{E}\left[Q_{1}\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right) ; v_{1}\right) \mid v_{1}\right]$

$$
\begin{aligned}
& =\mathrm{E}\left[Q_{1}\left(v_{1}, v_{2} ; v_{1}\right) \mid v_{1}\right] \\
& =S_{1}\left(v_{1}\right)=\int_{0}^{v_{1}}\left[\int_{0}^{v_{1}^{\prime}} \phi_{2}\left(v_{2}\right) \mathrm{d} v_{2}\right] \mathrm{d} v_{1}^{\prime}
\end{aligned}
$$

by the truthtelling lemma
(Similarly for player 2)

Payoff equivalence: Proof

So at given BNE of either auction, expected payoff to player 1 of type v_{1} is:

$$
\int_{0}^{v_{1}}\left[\int_{\mathbf{0}}^{v_{1}^{\prime}} \phi_{2}\left(v_{2}\right) \mathrm{d} v_{2}\right] \mathrm{d} v_{1}^{\prime}
$$

This does not depend on the BNE!
(Similarly for player 2)

Revenue equivalence

Given two auctions with BNE such that:
-in each BNE, if $v_{i}=0$ then player i gets zero payoff; and
-in each BNE, item al ways goes to highest valuation player

Theorem: Both BNE yield the same expected revenue to the auctioneer.

Revenue equivalence: Proof

Fix $\operatorname{BNE}\left(s_{1}, s_{2}\right)$ of one of the auctions
Note:

$$
\sum_{i=1}^{2} Q_{i}\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right) ; v_{i}\right)
$$

$$
=v_{w\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right)\right)}-p_{w\left(s_{1}\left(v_{1}\right), s_{2}\left(v_{2}\right)\right)}
$$

Revenue equivalence: Proof

Taking expectations:
Sum of expected payoffs to players
$=\mathbf{E}\left[\max \left\{v_{1}, v_{2}\right\}\right]$ -
Expected revenue to auctioneer

Revenue equivalence: Proof

Taking expected values:
Expected revenue to auctioneer
$=\mathrm{E}\left[\max \left\{v_{1}, v_{2}\right\}\right]-$
Sum of expected payoffs to players

Revenue equivalence: Proof

Taking expected values:
Expected revenue to auctioneer
$=\mathrm{E}\left[\max \left\{v_{1}, v_{2}\right\}\right]$ -
Sum of expected payoffs to players

Right hand side is same for BNE of both auctions (by payoff equivalence)

Revenue equivalence

Note that at BNE, expected payoffs to players are ≥ 0.

So:
Revenue to auctioneer $\leq \mathrm{E}\left[\max \left\{v_{1}, v_{2}\right\}\right]$

[Aside: optimal auction theory]

The problem of maximizing the equilibrium revenue to the auctioneer is called optimal auction design.
For this problem to be well-defined, an additional constraint is needed, individual rationality:
$\mathrm{E}\left[Q_{i}\left(s_{i}\left(v_{i}\right), \mathbf{s}_{-i}\left(\mathbf{v}_{-i}\right) ; v_{i}\right) \mid v_{i}\right] \geq 0$ for all i.
(Otherwise bidder i would not participate.)

[Aside: optimal auction theory]

The framework defined here can be used to characterize the optimal auction design for any distribution of players' valuations.
(See Myerson 1979)

Symmetric BNE

From now on, assume:

- $B_{1}=B_{2}=[0, \infty)$
- $\phi_{1}=\phi_{2}=\phi$ (same distribution)
(Assume ϕ is positive on its entire domain)
A BNE is symmetric if:
$s_{1}(v)=s_{2}(v)$ for all $v \geq 0$ $s(v)=s_{i}(v)$ is called the bid function.

Symmetric BNE theorem

Theorem:

If highest bidder wins,
then in a symmetric BNE with bid function s,
s is strictly increasing,
so the winning bidder also has
the highest valuation.
(In case of tie, assume player 2 wins)

Symmetric BNE: Proof

Apply revelation principle to build new incentive compatible auction:

$$
\begin{aligned}
& w\left(b_{1}, b_{2}\right)=w\left(s\left(b_{1}\right), s\left(b_{2}\right)\right) \\
& p_{i}\left(b_{1}, b_{2}\right)=p_{i}\left(s\left(b_{1}\right), s\left(b_{2}\right)\right), \quad i=1,2
\end{aligned}
$$

In this auction:

$$
\underline{P}_{1}\left(v_{1}\right)=\int_{0}^{\infty} I\left\{w\left(v_{1}, v_{2}\right)=1\right\} \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

Symmetric BNE: Proof

Apply revelation principle to build new incentive compatible auction:

$$
\begin{aligned}
& w\left(b_{1}, b_{2}\right)=w\left(s\left(b_{1}\right), s\left(b_{2}\right)\right) \\
& p_{i}\left(b_{1}, b_{2}\right)=p_{i}\left(s\left(b_{1}\right), s\left(b_{2}\right)\right), \quad i=1,2
\end{aligned}
$$

In this auction:

$$
\underline{\mathbf{P}}_{1}\left(v_{1}\right)=\int_{0}^{\infty} I\left\{w\left(s\left(v_{1}\right), s\left(v_{2}\right)\right)=1\right\} \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

Symmetric BNE: Proof

Apply revelation principle to build new incentive compatible auction:

$$
\begin{aligned}
& w\left(b_{1}, b_{2}\right)=w\left(s\left(b_{1}\right), s\left(b_{2}\right)\right) \\
& p_{i}\left(b_{1}, b_{2}\right)=p_{i}\left(s\left(b_{1}\right), s\left(b_{2}\right)\right), \quad i=1,2
\end{aligned}
$$

In this auction:

$$
\underline{\mathbf{P}}_{1}\left(v_{1}\right)=\int_{0}^{\infty} I\left\{s\left(v_{1}\right)>s\left(v_{2}\right)\right\} \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

Symmetric BNE: Proof

By truthtelling lemma,

$$
\int_{0}^{\infty} I\left\{s\left(v_{1}\right)>s\left(v_{2}\right)\right\} \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

is nondecreasing in v_{1}.

Only possible if $s(v)$ is nondecreasing in v.
We only need to show s is strictly increasing.

Symmetric BNE: Proof

We will show s is strictly increasing in the special case of the
first price auction:

$$
\begin{aligned}
p_{i}\left(b_{1}, b_{2}\right) & =b_{i} \text { if } w\left(b_{1}, b_{2}\right)=i \\
& =0 \text { otherwise }
\end{aligned}
$$

However, the result holds more generally for the other auctions we consider.

Symmetric BNE: Proof

Suppose s is not strictly increasing:

Symmetric BNE: Proof

Suppose s is not strictly increasing:

Symmetric BNE: Proof

Suppose s is not strictly increasing.
Fix $a<b$ such that:

$$
s(v)=s(a), \quad a \leq v \leq b
$$

We can assume: $a>s(a)$. (If not, just increase a slightly.)

Symmetric BNE: Proof

Given player 2 is using $s_{2}=s$, suppose player 1 bids

$$
b_{1}=s(a)+\varepsilon \text { when } v_{1}=a
$$

Then when $v_{1}=a$:

- Expected payment by player 1
increases by at most ε
- Player 1 wins if $v_{2} \in[a, b]$

Symmetric BNE: Proof

Given player 2 is using $s_{2}=s$, suppose player 1 bids

$$
b_{1}=s(a)+\varepsilon \text { when } v_{1}=a .
$$

Player 1's change in expected payoff

$$
\geq(a-s(a)-\varepsilon)(F(b)-F(a))-\varepsilon
$$

>0 for small enough ε
Profitable deviation!

Symmetric BNE: Proof

Conclude:
s is strictly increasing

So:
Winner must have highest valuation

Symmetric BNE

In general, can show the same result if:
(1) $p_{i}\left(b_{1}, b_{2}\right) \geq 0$ for all b_{1}, b_{2};
(2) the winner's payment is positive when at least one of b_{1}, b_{2} is positive; and
(3) $p_{1}\left(b_{1}, b_{2}\right)=p_{2}\left(b_{2}, b_{1}\right)$ for all b_{1}, b_{2} (permutation invariance)

Moral

Symmetric BNE of "standard auctions"
(first price, second price, etc.)
have the same expected payoffs and auctioneer revenue.

In particular,
Expected revenue $=E[$ second highest bid]
(Why?)

MS\&E 246: Lecture 14
 Auctions: Examples

Ramesh J ohari

Example: Second price auction

- Action space (bids): $B_{i}=[0, \infty), \quad i=1,2$
- Winner:

$$
\begin{aligned}
w\left(b_{1}, b_{2}\right) & =1 \text { if } b_{1}>b_{2} \\
& =2 \text { if } b_{1} \leq b_{2}
\end{aligned}
$$

- Payments: $\quad p_{i}\left(b_{1}, b_{2}\right)=b_{-i}$ if $w\left(b_{1}, b_{2}\right)=i$; $=0$ otherwise
- Assume: $\phi_{1}=\phi_{2}=\phi$, continuous, positive everywhere on its domain, with distribution F

Example: Second price auction

Since $d_{i}\left(v_{i}\right)=v_{i}$ is a dominant action for each player,
$s_{i}\left(v_{i}\right)=v_{i}$ for $i=1,2$ is a BNE.
It is a symmetric and truthtelling BNE.

So the second price auction is incentive compatible.

Example: Second price auction

The truthtelling lemma tells us:
$S_{1}\left(v_{1}\right)=S_{1}(0)+\int_{0}^{v_{1}} \mathrm{P}_{1}(z) \mathrm{d} z$
But: $S_{1}(0)=0$

$$
\mathrm{P}_{1}\left(v_{1}\right)=\mathrm{P}\left(v_{1}>v_{2} \mid v_{1}\right)=\int_{0}^{v_{1}} \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

So $S_{1}\left(v_{1}\right)=\int_{0}^{v_{1}}\left[\int_{\mathbf{0}}^{z} \phi\left(v_{2}\right) \mathrm{d} v_{2}\right] \mathrm{d} z$
(Similarly for player 2)

Example: Second price auction

The truthtelling lemma tells us:
$S_{1}\left(v_{1}\right)=S_{1}(0)+\int_{0}^{v_{1}} \mathrm{P}_{1}(z) \mathrm{d} z$
But: $S_{1}(0)=0$

$$
\mathbf{P}_{1}\left(v_{1}\right)=\mathbf{P}\left(v_{1}>v_{2} \mid v_{1}\right)=\int_{0}^{v_{1}} \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

So $S_{1}\left(v_{1}\right)=\int_{0}^{v_{1}} F(z) \mathrm{d} z$
(Similarly for player 2)

Example: Second price auction

Expected payoff to player 1 , given type v_{1}
$=S_{1}\left(v_{1}\right)=\int_{0}^{v_{1}} F(z) \mathrm{d} z$
(Similarly for player 2)

Example: Second price auction

Are there any other symmetric BNE of the second price auction?

Suppose $s_{1}=s_{2}=s$ is such a BNE.

Example: Second price auction

By symmetric BNE theorem,
s is strictly increasing, and player 1 wins if and only if $v_{1}>v_{2}$

Expected payoff to player 1 of type v_{1} :

$$
S_{1}\left(v_{1}\right)=\int_{0}^{v_{1}}\left(v_{1}-s\left(v_{2}\right)\right) \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

Example: Second price auction

Observe that:

- $S_{i}(0)=0$ for $i=1,2$
- Highest valuation player always wins

So by payoff equivalence theorem:

$$
S_{1}\left(v_{1}\right)=S_{1}\left(v_{1}\right)
$$

Example: Second price auction

By payoff equivalence:

$$
S_{1}\left(v_{1}\right)=S_{1}\left(v_{1}\right)
$$

Example: Second price auction

By payoff equivalence:

$$
\int_{0}^{v_{1}} F(z) \mathrm{d} z=\int_{0}^{v_{1}}\left(v_{1}-s\left(v_{2}\right)\right) \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

Example: Second price auction

By payoff equivalence:

$$
\left.\int_{0}^{v_{1}} F(z) \mathrm{d} z=v_{1} F\left(v_{1}\right)-\int_{0}^{v_{1}} s\left(v_{2}\right)\right) \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

Differentiate:

$$
F\left(v_{1}\right)=F\left(v_{1}\right)+v_{1} \phi\left(v_{1}\right)-s\left(v_{1}\right) \phi\left(v_{1}\right)
$$

Example: Second price auction

By payoff equivalence:

$$
\left.\int_{0}^{v_{1}} F(z) \mathrm{d} z=v_{1} F\left(v_{1}\right)-\int_{0}^{v_{1}} s\left(v_{2}\right)\right) \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

Differentiate:

$$
0=v_{1} \phi\left(v_{1}\right)-s\left(v_{1}\right) \phi\left(v_{1}\right)
$$

Example: Second price auction

By payoff equivalence:

$$
\left.\int_{0}^{v_{1}} F(z) \mathrm{d} z=v_{1} F\left(v_{1}\right)-\int_{0}^{v_{1}} s\left(v_{2}\right)\right) \phi\left(v_{2}\right) \mathrm{d} v_{2}
$$

Differentiate:

$$
0=\left(v_{1}-s\left(v_{1}\right)\right) \phi\left(v_{1}\right)
$$

So: $v_{1}=s\left(v_{1}\right)$

Example: Second price auction

Conclude: truthtelling is unique symmetric BNE.

Expected revenue to auctioneer:
E[second highest valuation]

Example: First price auction

- Action space (bids): $B_{i}=[0, \infty), \quad i=1,2$
- Winner:

$$
\begin{aligned}
w\left(b_{1}, b_{2}\right) & =1 \text { if } b_{1}>b_{2} \\
& =2 \text { if } b_{1} \leq b_{2}
\end{aligned}
$$

- Payments: $p_{i}\left(b_{1}, b_{2}\right)=b_{i}$ if $w\left(b_{1}, b_{2}\right)=i$;
$=0$ otherwise
- Assume: $\phi_{1}=\phi_{2}=\phi$, continuous, positive everywhere on its domain, with distribution F

Example: First price auction

What are the symmetric BNE of the first price auction?

Suppose $s_{1}=s_{2}=s$ is a symmetric BNE.

Example: First price auction

By symmetric BNE theorem,
s is strictly increasing, and player 1 wins if and only if $v_{1}>v_{2}$

Expected payoff to player 1 of type v_{1} :

$$
\begin{aligned}
S_{1}^{\mathrm{FP}}\left(v_{1}\right) & =\int_{0}^{v_{1}}\left(v_{1}-s\left(v_{1}\right)\right) \phi\left(v_{2}\right) \mathrm{d} v_{2} \\
& =\left(v_{1}-s\left(v_{1}\right)\right) F\left(v_{1}\right)
\end{aligned}
$$

Example: First price auction

Observe that:

- $S_{i}(0)=0$ for $i=1,2$
- Highest valuation player always wins

So by payoff equivalence theorem,

$$
S_{1}{ }^{\mathrm{FP}}\left(v_{1}\right)=\text { expected payoff to type } v_{1}
$$ player in second price auction

Example: First price auction

By payoff equivalence:

$$
S_{1}{ }^{\mathrm{FP}}\left(v_{1}\right)=\int_{0}^{v_{1}} F(z) \mathrm{d} z
$$

Example: First price auction

By payoff equivalence:

$$
\left(v_{1}-s\left(v_{1}\right)\right) F\left(v_{1}\right)=\int_{0}^{v_{1}} F(z) \mathrm{d} z
$$

So:

$$
s(v)=v-\frac{\int_{0}^{v} F(z) d z}{F(v)}
$$

(e.g., when Φ is uniform: $s(v)=v / 2$)

Example: First price auction

$$
s(v)=v-\frac{\int_{0}^{v} F(z) d z}{F(v)}
$$

Observe that $s(v)<v$.
This practice is called bid shading.

Example: First price auction

Revenue equivalence also holds, so:

Expected revenue to auctioneer $=$ expected revenue under second price auction =
E[second highest valuation]
$<\mathbf{E}\left[\max \left\{v_{1}, v_{2}\right\}\right]$

Revenue

The shortfall between $\mathbf{E}\left[\max \left\{v_{1}, v_{2}\right\}\right]$ and expected revenue is called an
information rent:
At an equilibrium the buyers must make a profit if they reveal their private valuation.

Revenue

However, this relies on independent private valuations.

If valuations are correlated, the auctioneer can get expected revenue $=\mathbf{E}\left[\max \left\{v_{1}, v_{2}\right\}\right]$

See Problem Set 6.
(Theorem: Cremer and McLean, 1985)

MS\&E 246: Lecture 15 Perfect Bayesian equilibrium

Ramesh J ohari

Dynamic games

In this lecture, we begin a study of dynamic games of incomplete information.

We will develop an analog of Bayesian equilibrium for this setting, called perfect Bayesian equilibrium.

Why do we need beliefs?

Recall in our study of subgame perfection that problems can occur if there are " not enough subgames" to rule out equilibria.

Entry example

- Two firms
- First firm decides if/ how to enter
- Second firm can choose to "fight"

Entry example

Note that this game only has one subgame.
Thus SPNE are any NE of strategic form.
Firm 2

Firm 1

	L	R
Entry $_{1}$	$(-1,-1)$	$(3,0)$
Entry $_{2}$	$(-1,-1)$	$(2,1)$
Exit	$(0,2)$	$(0,2)$

Entry example

Two pure NE of strategic form: (Entry ${ }_{1}$, R) and (Exit, L)

Firm 2

Firm 1

	L	R
Entry $_{1}$	$(-1,-1)$	$(3,0)$
Entry $_{2}$	$(-1,-1)$	$(2,1)$
Exit	$(0,2)$	$(0,2)$

Entry example

But firm 1 should "know" that if it chooses to enter, firm 2 will never "fight."

Entry example

So in this situation, there are too many SPNE.

Beliefs

A solution to the problem of the entry game is to include beliefs as part of the solution concept:
Firm 2 should never fight, regardless of what it believes firm 1 played.

Beliefs

In general, the beliefs of player i are: a conditional distribution over everything player i does not know, given everything that player i does know.

Beliefs

In general, the beliefs of player i are:
a conditional distribution over
the nodes of the information set i is in, given player i is at that information set.
(When player i is in information set h, denoted by $\mathrm{P}_{i}(v \mid h)$, for $v \in h$)

Beliefs

One example of beliefs:
In static Bayesian games, player i 's belief is $\mathrm{P}\left(\theta_{-i} \mid \theta_{i}\right)$ (where θ_{j} is type of player j).

But types and information sets are in 1-to-1 correspondence in Bayesian games, so this matches the new definition.

Perfect Bayesian equilibrium

Perfect Bayesian equilibrium (PBE) strengthens subgame perfection by requiring two elements:

- a complete strategy for each player i
(mapping from info. sets to mixed actions)
- beliefs for each player i
($\mathrm{P}_{i}(v \mid h$) for all information sets h of player i)

Entry example

In our entry example, firm 1 has only one information set, containing one node. His belief just puts probability 1 on this node.

Entry example

Suppose firm 1 plays a mixed action with probabilities ($p_{\text {Entry }_{1}}, p_{\text {Entry }_{2}}, p_{\text {Exit }}$), with $p_{\text {Exit }}<1$.

Entry example

What are firm 2's beliefs in 2.1?
Computed using Bayes' Rule!

Entry example

What are firm 2's beliefs in 2.1?

$$
\mathrm{P}_{2}(\mathrm{~A} \mid 2.1)=p_{\text {Entry }_{1}} /\left(p_{\text {Entry }_{1}}+p_{\text {Entry }_{2}}\right)
$$

Entry example

What are firm 2's beliefs in 2.1?

$$
\mathbf{P}_{2}(\mathbf{B} \mid 2.1)=p_{\text {Entry }_{2}} /\left(p_{\text {Entry }_{1}}+p_{\text {Entry }_{2}}\right)
$$

Beliefs

In a perfect Bayesian equilibrium,

"wherever possible",
beliefs must be computed using Bayes' rule and the strategies of the players.
(At the very least, this ensures information sets that can be reached with positive probability have beliefs assigned using Bayes' rule.)

Rationality

How do player's choose strategies?
As always, they do so to maximize payoff.

Formally:
Player i 's strategy $s_{i}(\cdot)$ is such that in any information set h of player i, $s_{i}(h)$ maximizes player i 's expected payoff, given his beliefs and others' strategies.

Entry example

For any beliefs player 2 has in 2.1, he maximizes expected payoff by playing R.

Entry example

Thus, in any PBE, player 2 must play R in 2.1.

Entry example

Thus, in any PBE, player 2 must play R in 2.1.

Entry example

So in a PBE, player 1 will play Entry ${ }_{1}$ in 1.1.

Entry example

Conclusion: unique PBE is (Entry_1, R). We have eliminated the NE (Exit, L).

PBE vs. SPNE

Note that a PBE is equivalent to SPNE for dynamic games of complete and perfect information:
All information sets are singletons, so beliefs are trivial.
In general, PBE is stronger than SPNE for dynamic games of complete and imperfect information.

Summary

- Beliefs: conditional distribution at every information set of a player
- Perfect Bayesian equilibrium:

1. Beliefs computed using Bayes' rule and strategies (when possible)
2. Actions maximize expected payoff, given beliefs and strategies

An ante game

- Let t_{1}, t_{2} be uniform[0,1], independent.
- Player i observes t_{i}; each player puts $\$ 1$ in the pot.
- Player 1 can force a "showdown", or player 1 can "raise" (and add $\$ 1$ to the pot).
- In case of a showdown, both players show t_{i}; the highest t_{i} wins the entire pot.
- In case of a raise, Player 2 can "fold" (so player 1 wins) or "match" (and add \$1 to the pot).
- If Player 2 matches, there is a showdown.

An ante game

To find the perfect Bayesian equilibria of this game:
Must provide strategies $s_{1}(\cdot), s_{2}(\cdot)$; and beliefs $P_{1}(\cdot \mid \cdot), P_{2}(\cdot \mid \cdot)$.

An ante game

Information sets of player 1 :
t_{1} : His type.
Information sets of player 2 :
(t_{2}, a_{1}) : type t_{2}, and action a_{1} played by player 1 .

An ante game

Represent the beliefs by densities.
Beliefs of player 1 :
$\mathrm{p}_{1}\left(t_{2} \mid t_{1}\right)=t_{2}$ (as types are independent)
Beliefs of player 2 :
$\mathrm{p}_{2}\left(t_{1} \mid t_{2}, a_{1}\right)=$ density of player 1's type, conditional on having played a_{1}
$=\mathrm{p}_{2}\left(t_{1} \mid a_{1}\right)$ (as types are indep.)

An ante game

Using this representation, can you find a perfect Bayesian equilibrium of the game?

MS\&E 246: Lecture 16 Signaling games

Ramesh J ohari

Signaling games

Signaling games are two-stage games where:

- Player 1 (with private information) moves first. His move is observed by Player 2.
- Player 2 (with no knowledge of Player 1's private information) moves second.
- Then payoffs are realized.

Dynamic games

Signaling games are a key example of dynamic games of incomplete information.
(i.e., a dynamic game where the entire structure is not common knowledge)

Signaling games

The formal description:
Stage 0:
Nature chooses a random variable t_{1}, observable only to Player 1,
from a distribution $\mathrm{P}\left(t_{1}\right)$.

Signaling games

The formal description:
Stage 1:
Player 1 chooses an action a_{1} from the set A_{1}.
Player 2 observes this choice of action. (The action of Player 1 is also called a "message.")

Signaling games

The formal description:
Stage 2:
Player 2 chooses an action a_{2} from the set A_{2}.

Following Stage 2, payoffs are realized:

$$
\Pi_{1}\left(a_{1}, a_{2} ; t_{1}\right) ; \Pi_{2}\left(a_{1}, a_{2} ; t_{1}\right)
$$

Signaling games

Observations:

- The modeling approach follows Harsanyi's method for static Bayesian games.
- Note that Player 2's payoff depends on the type of player 1 !
- When Player 2 moves first, and Player 1 moves second, it is called a screening game.

Application 1: Labor markets

A key application due to Spence (1973):
Player 1: worker
t_{1} : intrinsic ability
a_{1} : education decision
Player 2: firm(s)
a_{2} : wage offered
Payoffs: $\Pi_{1}=$ net benefit
$\Pi_{2}=$ productivity

Application 2: Online auctions

Player 1: seller
t_{1} : true quality of the good
a_{1} : advertised quality
Player 2: buyer(s)
a_{2} : bid offered
Payoffs: $\Pi_{1}=$ profit
$\Pi_{2}=$ net benefit

Application 3: Contracting

A model of Cachon and Lariviere (2001):
Player 1: manufacturer
t_{1} : demand forecast
a_{1} : declared demand forecast, contract offer

Player 2: supplier
a_{2} : capacity built
Payoffs: $\Pi_{1}=$ profit of manufacturer $\Pi_{2}=$ profit of supplier

A simple signaling game

Suppose there are two types for Player 1, and two actions for each player:

- $t_{1}=\mathrm{H}$ or $t_{1}=\mathrm{L}$

Let $p=\mathrm{P}\left(t_{1}=\mathrm{H}\right)$

- $A_{1}=\{\mathrm{a}, \mathrm{b}\}$
- $A_{2}=\{\mathrm{A}, \mathrm{B}\}$

A simple signaling game

Nature moves first:

A simple signaling game

Nature moves first:

A simple signaling game

Player 1 moves second:

A simple signaling game

Player 1 moves second:

A simple signaling game

Player 2 observes Player 1's action:

A simple signaling game

Player 2 moves:

A simple signaling game

Payoffs are realized: $\Pi_{i}\left(a_{1}, a_{2} ; t_{1}\right)$

Perfect Bayesian equilibrium

Each player has 2 information sets, and 2 actions in each, so 4 strategies.
A PBE is a pair of strategies and beliefs such that:
-each players' beliefs are derived from strategies using Bayes' rule (if possible)
-each players' strategies maximize expected payoff given beliefs

Pooling vs. separating equilibria

When player 1 plays the same action, regardless of his type, it is called a pooling strategy.
When player 1 plays different actions, depending on his type, it is called a separating strategy.

Pooling vs. separating equilibria

In a pooling equilibrium,
Player 2 gains no information about t_{1} from Player 1's message
$\Rightarrow \mathrm{P}_{2}\left(t_{1}=\mathrm{H} \mid a_{1}\right)=\mathrm{P}\left(t_{1}=\mathrm{H}\right)=p$
In a separating equilibrium, Player 2 knows Player 1's type exactly from Player 1's message

$$
\Rightarrow \mathrm{P}_{2}\left(t_{1}=\mathrm{H} \mid a_{1}\right)=0 \text { or } 1
$$

An eBay-like model

Suppose seller has an item with quality either H (prob. p) or L (prob. $1-p$).
Seller can advertise either H or L .
Assume there are two bidders.
Suppose that bidders always bid truthfully, given their beliefs.
(This would be the case if the seller used a second price auction.)

An eBay-like model

Suppose seller al ways advertises high.
Then: buyers will never "trust" the seller, and always bid expected valuation.

This is the pooling equilibrium:

$$
\begin{aligned}
& s_{1}(\mathrm{H})=s_{1}(\mathrm{~L})=\mathrm{H} \\
& s_{\mathrm{B}}(\mathrm{H})=s_{\mathrm{B}}(\mathrm{~L})=p \mathrm{H}+(1-p) \mathrm{L} .
\end{aligned}
$$

An eBay-like model

Is there any equilibrium where $s_{1}\left(t_{1}\right)=t_{1}$?
(In this case the seller is truthful.)
In this case the buyers bid:

$$
s_{\mathrm{B}}(\mathrm{H})=\mathrm{H}, s_{\mathrm{B}}(\mathrm{~L})=\mathrm{L} .
$$

But if the buyers use this strategy, the seller prefers to al ways advertise H!

An eBay-like model

Now suppose that if the seller lies when the true value is L , there is a cost c (in the form of lower reputation in future transactions).
If $\mathrm{H}-\mathrm{c}<\mathrm{L}$,
then the seller prefers to tell the truth \Rightarrow separating equilibrium.

An eBay-like model

This example highlights the importance of signaling costs:
To achieve a separating equilibrium, there must be a difference in the costs of different messages.
(When there is no cost, the resulting message is called "cheap talk.")

