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Administrative details

• My e-mail: ramesh.johari@stanford.edu
• Course assistant:

Christina Aperjis, caperjis@stanford.edu
• Website:

eeclass.stanford.edu/msande246
All students must sign up there,
and keep up with announcements



Administrative details

• 6-7 problem sets
Assigned Thursday, due following 
Thursday in box outside Terman 319
No late assignments accepted

• Midterm to be held February 8 (in class)



Big picture

Economics and engineering are
tied together more than ever

Game theory provides a set of tools we can 
use to study problems at this interface



Motivating examples

• Electronic marketplaces
• eBay auctions:

Fixed termination time
• Amazon auctions

Terminate after 10 minutes of inactivity

Which yields higher revenue?



Motivating examples

• Internet resource allocation
• TCP: regulates flow of packets through the 

Internet
• Malicious users can grab much more than 

“fair” share
• How do we design “fair”, “efficient”

allocation protocols that are robust to 
gaming?



Motivating examples

• Electricity markets
• Electricity can’t be stored, and

must be reliable
• Market failure is disastrous

(e.g., California in 2000)
• How do we design efficient, sustainable 

markets?



Internet provider competition

• Internet = 1000s of ASes (autonomous 
systems)

• Bilateral contracts between ASes:

• Transit vs. peer contracts

A B



ISP contracts

• Transit vs. peer contracts
• Transit:

If A pays B, then
A agrees to carry all traffic to/from B

• Peer:
A and B are of similar size,
and agree to exchange traffic
terminating in each other’s network



Problems in the ISP industry

• In 2002, seven dominant players:
• Sprint
• AT&T
• MCI/UUnet
• Qwest
• C&W
• Level3
• Genuity



Problems in the ISP industry

• In 2002, seven dominant players:
• Sprint (subsidized by wireless)
• AT&T ACQUIRED (SBC)
• MCI/UUnet ACQUIRED (Verizon)
• Qwest $18B debt
• C&W R.I.P. (in U.S.)
• Level3 (merged w/Genuity)
• Genuity ACQUIRED (Level3)



Econ 101, pt. 1: war of attrition

• Pricing below marginal cost

⇒ War of attrition (repeated game):

Lose money now in hopes of being last 
firm standing 



Econ 101, pt. 2: Bertrand

• Example:

• If  p1 < p2, then ISP 2’s profit = zero

CNN

ISP 1 ISP 2peer

“eyeballs”

p1 p2



The future

• Econ 101 captures the essence:
• cutthroat pricing
• massive financial losses
• “last firm standing” mentality

• Question: 
Is a regulated monopoly the only 
endgame?



Engineering

What is the problem in Bertrand example?

ISP 2 receives no credit for the value 
generated.

Current protocols don’t expedite 
transmission of value information.

⇒ How do we build economically robust, 
informative protocols?



This course

We will develop the basics of 
noncooperative game theory…

…but with an eye towards connection with 
engineering applications.



Our first game

Two players each have a budget of $4.00.
I have $8.00.

Each player i puts $wi in an envelope.

I give player i a fraction wi/(w1 + w2) of the 
$8.00 that I have.

Whatever they did not put in the envelope, 
they keep for themselves.



Reasoning about the game

• What is the “best” a player can do?
• What is the best they can do together?
• Should they ever bid zero?
• Is there any bid a player should never

make?
• What is the minimum a player can 

guarantee himself or herself?
• What will happen when the game is 

played?



Reasoning about the game

Player 1’s payoff = 8 x w1/(w1 + w2) + 4 - w1

$4$3$2$1$0

$4.00$4.57$5.33$6.40$8.00$4
$4.43$5.00$5.80$7.00$9.00$3
$4.67$5.20$6.00$7.33$10.00$2
$4.60$5.00$5.67$7.00$11.00$1
$4.00$4.00$4.00$4.00$4.00$0

Player 2’s bid

P
la

ye
r 1

’s
 b

id



Reasoning about the game

Note that bidding $2 is always better than 
bidding $0, $3, or $4:

$4$3$2$1$0

$4.00$4.57$5.33$6.40$8.00$4
$4.43$5.00$5.80$7.00$9.00$3
$4.67$5.20$6.00$7.33$10.00$2
$4.60$5.00$5.67$7.00$11.00$1
$4.00$4.00$4.00$4.00$4.00$0

Player 2’s bid

P
la

ye
r 1

’s
 b

id



Reasoning about the game

If we anticipate player 2 will not bid $0, 
$3, or $4…

$4$3$2$1$0

$4.00$4.57$5.33$6.40$8.00$4
$4.43$5.00$5.80$7.00$9.00$3
$4.67$5.20$6.00$7.33$10.00$2
$4.60$5.00$5.67$7.00$11.00$1
$4.00$4.00$4.00$4.00$4.00$0

Player 2’s bid

P
la

ye
r 1

’s
 b

id



Reasoning about the game

…then we should always bid $2…

$4$3$2$1$0

$4.00$4.57$5.33$6.40$8.00$4
$4.43$5.00$5.80$7.00$9.00$3
$4.67$5.20$6.00$7.33$10.00$2
$4.60$5.00$5.67$7.00$11.00$1
$4.00$4.00$4.00$4.00$4.00$0

Player 2’s bid
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Reasoning about the game

…and so should player 2.

$4$3$2$1$0

$4.00$4.57$5.33$6.40$8.00$4
$4.43$5.00$5.80$7.00$9.00$3
$4.67$5.20$6.00$7.33$10.00$2
$4.60$5.00$5.67$7.00$11.00$1
$4.00$4.00$4.00$4.00$4.00$0

Player 2’s bid

P
la

ye
r 1

’s
 b

id



Reasoning about the game

• Does this way of reasoning about the 
game make sense?

• Thought experiments:
What if the budgets are different?
What if the size of the common pool is

different?



MS&E 246: Lecture 2
The basics

Ramesh Johari
January 16, 2007



Course overview

(Mainly) noncooperative game theory.

Noncooperative:
Focus on individual players’ incentives 
(note these might lead to cooperation!)

Game theory:
Analyzing the behavior of rational,
self interested players



What’s in a game?

1. Players: Who? 
2. Strategies: What actions are available?
3. Rules: How? When? What do they know?
4. Outcomes: What results?
5. Payoffs:

How do players evaluate outcomes of
the game?



Example: Chess

1. Players: Chess masters
2. Strategies: Moving a piece
3. Rules: How pieces are moved/removed
4. Outcomes: Victory or defeat
5. Payoffs:

Thrill of victory,
agony of defeat



Rationality

Players are rational and self-interested:

They will always choose actions that 
maximize their payoffs,
given everything they know.



Static games

We first focus on static games.
(one-shot games, simultaneous-move games)

For any such game, the rules say:
All players must simultaneously pick a 
strategy.  

This immediately determines an outcome, 
and hence their payoff.



Knowledge

• All players know
the structure of the game:

players, strategies, rules,
outcomes, payoffs 



Common knowledge

• All players know
the structure of the game
• All players know all players know

the structure
• All players know all players know all players know

the structure

and so on... ⇒
We say: the structure is common knowledge.

This is called complete information.



PART I: Static games of 
complete information 



Representation

• N : # of players
• Sn : strategies available to player n
• Outcomes: 

Composite strategy vectors
• Πn(s1, …, sN) : 

payoff to player n when
player i plays strategy si, i = 1, …, N



Example: A routing game

MCI and AT&T:
A Chicago customer of MCI wants to send

1 MB to an SF customer of AT&T.
A LA customer of AT&T wants to send

1 MB to an NY customer of MCI.
Providers minimize their own cost.
Key: MCI and AT&T only exchange traffic 

(“peer”) in NY and SF.



Example: A routing game

San Francisco

Chicago

Los Angeles

New York

MCI

AT&T

Costs (per MB): Long links = 2;  Short links = 1

(1 MB for AT&T/SF)

(1 MB for MCI/NY)



Example: A routing game

Players: MCI and AT&T (N = 2)
Strategies: Choice of traffic exit

S1 = S2 = { nearest exit, furthest exit }
Payoffs:
Both choose furthest exit: ΠMCI = ΠAT&T = -2
Both choose nearest exit: ΠMCI = ΠAT&T =  -4
MCI chooses near, AT&T chooses far:
ΠMCI = -1, ΠAT&T = -5



Example: A routing game

Games with N = 2, Sn finite for each n
are called bimatrix games.

(-2,-2)(-5,-1)far

(-1,-5)(-4,-4)near

farnear

AT&T

MCI



Example: Matching pennies

This is a zero-sum matrix game.

(1,-1)(-1,1)T

(-1,1)(1,-1)H

TH

Player 2

Player 1



Dominance

sn ∈ Sn is a (weakly) dominated strategy if

there exists sn* ∈ Sn such that

Πn(sn*, s-n) ≥ Πn(sn, s-n),

for any choice of s-n , with
strict ineq. for at least one choice of s-n

If the ineq. is always strict, then sn is a 
strictly dominated strategy.



Dominance

sn* ∈ Sn is a weak dominant strategy if

sn* weakly dominates all other sn ∈ Sn.

sn* ∈ Sn is a strict dominant strategy if

sn* strictly dominates all other sn ∈ Sn.

(Note: dominant strategies are unique!)



Dominant strategy equilibrium

s ∈ S1 × L × SN is a 

strict (or weak)
dominant strategy equilibrium

if sn is a strict (or weak) dominant strategy
for each n.



Back to the routing game

Nearest exit is strict dominant strategy
for MCI.

(-2,-2)(-5,-1)far

(-1,-5)(-4,-4)near

farnear

AT&T

MCI



Back to the routing game

Nearest exit is strict dominant strategy
for AT&T.

(-2,-2)(-5,-1)far

(-1,-5)(-4,-4)near

farnear

AT&T

MCI



Back to the routing game

Both choosing nearest exit is a
strict dominant strategy equilibrium.

(-2,-2)(-5,-1)far

(-1,-5)(-4,-4)near

farnear

AT&T

MCI



Example: Second price auction

• N bidders
• Strategies: Sn = [0, ∞); sn = “bid”
• Rules & outcomes:

High bidder wins, pays second highest bid
• Payoffs:

• Zero if a player loses
• If player n wins and pays tn , then

Πn = vn - tn

• vn : valuation of player n



Example: Second price auction

• Claim: Truthful bidding (sn = vn) is a 
weak dominant strategy for player n.

• Proof: 
If player n considers a bid > vn :

Payoff may be lower when n wins,
and the same (zero) when n loses



Example: Second price auction

• Claim: Truthful bidding (sn = vn) is a 
weak dominant strategy for player n.

• Proof: 
If player n considers a bid < vn :

Payoff will be same when n wins,
but may be worse when n loses



Example: Second price auction

• We conclude:

Truthful bidding is a (weak)
dominant strategy equilibrium for the 
second price auction.



Example: Matching pennies

No dominant/dominated strategy exists!
Moral: Dominant strategy eq. may not exist.

(1,-1)(-1,1)T

(-1,1)(1,-1)H

TH

Player 2

Player 1



Iterated strict dominance

Given a game:
• Construct a new game by removing a 

strictly dominated strategy from one of 
the strategy spaces Sn .

• Repeat this procedure until no 
strictly dominated strategies remain.

If this results in a unique strategy profile,
the game is called dominance solvable.



Iterated strict dominance

• Note that the bidding game in Lecture 1 
was dominance solvable.

• There the unique resulting strategy 
profile was (6,6).



Example

Down

Up

(2,0)(0,1)(0,3)

(0,1)(1,2)(1,0)

RightMiddleLeft

Player 2

Player 1



Example

Down

Up

(2,0)(0,1)(0,3)

(0,1)(1,2)(1,0)

RightMiddleLeft

Player 2

Player 1



Example

Down

Up

(2,0)(0,1)(0,3)

(0,1)(1,2)(1,0)

RightMiddleLeft

Player 2

Player 1



Example

Thus the game is dominance solvable.

Down

Up

(2,0)(0,1)(0,3)

(0,1)(1,2)(1,0)

RightMiddleLeft

Player 2

Player 1



Example: Cournot duopoly

• Two firms (N = 2)
• Cournot competition:

each firm chooses a quantity sn ≥ 0
• Cost of producing sn : c sn

• Demand curve:
Price = P(s1 + s2) = a – b (s1 + s2)

• Payoffs:
Profit = Πn(s1, s2) = P(s1 + s2) sn – c sn



Example: Cournot duopoly

• Claim:
The Cournot duopoly is

dominance solvable.
• Proof technique:

First construct the
best response for each player.



Best response

Best response set for player n to s-n:
Rn(s-n) = arg maxsn ∈ Sn

Πn(sn, s-n)

[ Note: arg maxx ∈ X f(x) is the
set of x that maximize f(x) ]



Example: Cournot duopoly

Calculating the best response given s-n:

Differentiate and solve:

So:



Example: Cournot duopoly

For simplicity, let t = (a - c)/b
t

0
0 s1

s2

R1(s2)

R2(s1)

t



Example: Cournot duopoly

Step 1: Remove strictly dominated s1.
t

0
0 s1

s2

R1(s2)

R2(s1)

t

All s1 > t/2 are strictly
dominated by s1 = t/2



Example: Cournot duopoly

Step 2: Remove strictly dominated s2.

0
0 s1

s2

R1(s2)

R2(s1)

t

t

All s2 > t/2 are strictly
dominated by s2 = t/2…



Example: Cournot duopoly

Step 2: Remove strictly dominated s2.

0
0 s1

s2

R1(s2)

R2(s1)

t

t

All s2 > t/2 are strictly
dominated by s2 = t/2…

…and all s2 < t/4 are 
strictly dominated by 
s2 = t/4.



Example: Cournot duopoly

Step 3: Remove strictly dominated s1.

0
0 s1

s2

R1(s2)

R2(s1)

t

t



Example: Cournot duopoly

Step 4: Remove strictly dominated s2.

0
0 s1

s2

R1(s2)

R2(s1)

t

t



Example: Cournot duopoly

The process converges to the intersection 
point: s1 = t/3, s2 = t/3

[5t/16, 11t/32]5

[21t/64, 43t/128]7

[t/4, 3t/8]3

[0, t/2]1

Undominated s1Step #



Example: Cournot duopoly

Lower bound =

Upper bound = 



Dominance solvability: comments

• Order of elimination doesn’t matter
• Just as most games don’t have DSE,

most games are not dominance solvable



Rationalizable strategies

Given a game:
• For each player n, remove strategies from 

each Sn that are not best responses for any
choice of other players’ strategies.

• Repeat this procedure.

Strategies that survive this process are called 
rationalizable strategies.



Rationalizable strategies

In a two player game, a strategy s1 is 
rationalizable for player 1 if there exists 
a chain of justification
s1 → s2 → s1’ → s2’ → … → s1

where each is a best response to the one 
before.



Rationalizable strategies

• If sn is rationalizable, it also
survives iterated strict dominance.
(Why?)

⇒ For a dominance solvable game, 
there is a unique rationalizable strategy,
and it is the one given by 
iterated strict dominance.



Rationalizability: example

Note that M is not rationalizable,
but it survives iterated strict dominance.

B

T

(1,0)(1,1)(1,5)

(1,5)(1,1)(1,0)

RML

Player 2

Player 1



Rationalizable strategies

Note for later:

When “mixed” strategies are allowed,
rationalizability = iterated strict

dominance
for two player games.
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Outline

• Best response and pure strategy
Nash equilibrium

• Relation to other equilibrium notions
• Examples
• Bertrand competition



Best response set

Best response set for player n to s-n:
Rn(s-n) = arg maxsn ∈ Sn

Πn(sn, s-n)

[ Note: arg maxx ∈ X f(x) is the
set of x that maximize f(x) ]



Nash equilibrium

Given: N-player game
A vector s = (s1, …, sN) is a (pure strategy) 

Nash equilibrium if:
si ∈ Ri(s-i)
for all players i.

Each individual plays a best response to the 
others.



Nash equilibrium

Pure strategy Nash equilibrium is robust to 
unilateral deviations

One of the hardest questions in
game theory:
How do players know to play a Nash 
equilibrium?



Example: Prisoner’s dilemma

Recall the routing game:

(-2,-2)(-5,-1)far

(-1,-5)(-4,-4)near

farnear

AT&T

MCI



Example: Prisoner’s dilemma

Here (near,near) is the unique (pure 
strategy) NE:

(-2,-2)(-5,-1)far

(-1,-5)(-4,-4)near

farnear

AT&T

MCI



Summary of relationships

Given a game:
• Any DSE also survives ISD, and is a NE.

(DSE = dominant strategy equilibrium; ISD = iterated strict dominance)



Example: bidding game

Recall the bidding game from lecture 1:

$4$3$2$1$0

$4.00$4.57$5.33$6.40$8.00$4
$4.43$5.00$5.80$7.00$9.00$3
$4.67$5.20$6.00$7.33$10.00$2
$4.60$5.00$5.67$7.00$11.00$1
$4.00$4.00$4.00$4.00$4.00$0

Player 2’s bid

P
la

ye
r 1

’s
 b

id



Example: bidding game

Here (2,2) is the unique (pure strategy) NE:

$4$3$2$1$0

$4.00$4.57$5.33$6.40$8.00$4
$4.43$5.00$5.80$7.00$9.00$3
$4.67$5.20$6.00$7.33$10.00$2
$4.60$5.00$5.67$7.00$11.00$1
$4.00$4.00$4.00$4.00$4.00$0

Player 2’s bid

P
la

ye
r 1

’s
 b

id



Summary of relationships

Given a game:
• Any DSE also survives ISD, and is a NE.
• If a game is dominance solvable, the resulting 

strategy vector is a NE
Another example of this: the Cournot game.

• Any NE survives ISD (and is also rationalizable).

(DSE = dominant strategy equilibrium; ISD = iterated strict dominance)



Example: Cournot duopoly

Unique NE: (t/3 , t/3)
t

0
0

s2

R1(s2)

R2(s1)

t

Nash equilibrium =
Any point where the
best response curves
cross each other.

s1



Example: coordination game

Two players trying to coordinate their 
actions:

(1,2)(0,0)r

(0,0)(2,1)l

RL

Player 2

Player 1



Example: coordination game

Best response of player 1:
R1(L) = { l }, R1(R) = { r }

(1,2)(0,0)r

(0,0)(2,1)l

RL

Player 2

Player 1



Example: coordination game

Best response of player 2:
R2(l) = { L }, R2(r) = { R }

(1,2)(0,0)r

(0,0)(2,1)l

RL

Player 2

Player 1



Example: coordination game

Two Nash equilibria: (l, L) and (r, R).
Moral: NE is not a unique predictor of play!

(1,2)(0,0)r

(0,0)(2,1)l

RL

Player 2

Player 1



Example: matching pennies

No pure strategy NE for this game
Moral: Pure strategy NE may not exist.

(1,-1)(-1,1)T

(-1,1)(1,-1)H

TH

Player 2

Player 1



Example: Bertrand competition

• In Cournot competition, firms choose
the quantity they will produce.

• In Bertrand competition, firms choose
the prices they will charge.



Bertrand competition: model

• Two firms
• Each firm i chooses a price pi ≥ 0
• Each unit produced incurs a cost c ≥ 0
• Consumers only buy from the producer 

offering the lowest price
• Demand is D > 0



Bertrand competition: model

• Two firms
• Each firm i chooses a price pi

• Profit of firm i:
Πi(p1, p2) = (pi - c)Di(p1, p2)

where
0, if pi > p-i

Di(p1, p2) = D, if pi < p-i

½ D, if pi = p-i



Bertrand competition: analysis

Suppose firm 2 sets a price = p2 < c.
What is the best response set of firm 1?

Firm 1 wants to price higher than p2.

R1(p2) = (p2, ∞)



Bertrand competition: analysis

Suppose firm 2 sets a price = p2 > c.
What is the best response set of firm 1?

Firm 1 wants to price slightly lower than p2

… but there is no best response!

R1 (p2) = ∅



Bertrand competition: analysis

Suppose firm 2 sets a price = p2 = c.
What is the best response set of firm 1?

Firm 1 wants to price at or higher than c.

R1 (p2) = [c, ∞)



Best response of firm 1:

c

Bertrand competition: analysis

0
0

p2
R1(p2)

p1

c



Best response of firm 2:

c

Bertrand competition: analysis

0
0

p2

p1

c

R2(p1)



Where do they “cross”?

c

Bertrand competition: analysis

0
0

p2

p1

c

R2(p1)

R1(p2)



Thus the unique NE is where p1 = c, p2 = c.

c

Bertrand competition: analysis

0
0

p2

p1

c

R2(p1)

R1(p2)

Unique NE



Bertrand competition

Straightforward to show:
The same result holds if
demand depends on price, i.e.,
if the demand at price p is D(p) > 0.

Proof technique:
(1) Show pi < c is never played in a NE.
(2) Show if c < p1 < p2, then firm 2 

prefers to lower p2.
(3) Show if c < p1 = p2, then firm 2

prefers to lower p2



Bertrand competition

What happens if c1 < c2?
No pure NE exists; however, an ε-NE exists:

Each player is happy as long as they are
within ε of their optimal payoff.

ε-NE : p2 = c2, p1 = c2 - δ
(where δ is infinitesimal)



Bertrand vs. Cournot

Assume demand is D(p) = a - p.
Interpretation: D(p) denotes the total 

number of consumers willing to pay
at least p for the good.

Then the inverse demand is
P (Q) = a - Q.

This is the market-clearing price at which 
Q total units of supply would be sold.



Bertrand vs. Cournot

Assume demand is D(p) = a - p.
Then the inverse demand is

P (Q) = a - Q.
Assume c < a.
Bertrand eq.: p1 = p2 = c
Cournot eq: q1 = q2 = (a - c)/3

⇒ Cournot price = a/3 + 2c/3 > c



Cournot
total profits
(Producer
surplus)

Bertrand vs. Cournot

0
0

p

P (Q)

Q

c

a

Bertrand eq.
(perfectly 
competitive)

Cournot eq.Consumer
surplus



Cournot
total profits
(Producer
surplus)

Bertrand vs. Cournot

0
0

p

P (Q)

Q

c

a

Consumer
surplus

Deadweight loss:
Consumers are
willing to pay, and
firms could have
made a profit by selling



Bertrand vs. Cournot

• Cournot eq. price > Bertrand eq. price
• Bertrand price =

marginal cost of production
• In Cournot eq., there is positive 

deadweight loss.
This is because firms have market power:
they anticipate their effect on prices.



Questions to think about

• Can a weakly dominated strategy be 
played in a Nash equilibrium?

• Can a strictly dominated strategy be 
played in a Nash equilibrium?

• Why is any NE rationalizable?
• What are real-world examples of

Bertrand competition?
Cournot competition?



Summary: Finding NE

Finding NE is typically a matter of checking 
the definition.

Two basic approaches…



Finding NE: Approach 1

First approach to finding NE:

(1) Compute the complete best response 
mapping for each player.

(2) Find where they intersect each other 
(graphically or otherwise).



Finding NE: Approach 2

Second approach to finding NE:

Fix a strategy vector (s1, …, sN).
Check if any player has a profitable 

deviation.
If so, it cannot be a NE.
If not, it is an NE.



MS&E 246: Lecture 4
Mixed strategies

Ramesh Johari
January 18, 2007



Outline

• Mixed strategies
• Mixed strategy Nash equilibrium
• Existence of Nash equilibrium
• Examples
• Discussion of Nash equilibrium



Mixed strategies

Notation:
Given a set X, we let Δ(X) denote the set 

of all probability distributions on X.
Given a strategy space Si for player i, the 

mixed strategies for player i are Δ(Si).

Idea: a player can randomize over
pure strategies.



Mixed strategies

How do we interpret mixed strategies?

Note that players only play once; so
mixed strategies reflect uncertainty
about what the other player might play.



Payoffs

Suppose for each player i, pi is a
mixed strategy for player i;
i.e., it is a distribution on Si.

We extend Πi by taking the expectation:

Πi(p1, . . . ,pN ) =X
s1∈S1

· · ·
X

sN∈SN
p1(s1) · · · pN (sN )Πi(s1, . . . , sN )



Mixed strategy Nash equilibrium

Given a game (N, S1, …, SN, Π1, …, ΠN):
Create a new game with N players,

strategy spaces Δ(S1), …, Δ(SN),
and expected payoffs Π1, …, ΠN.

A mixed strategy Nash equilibrium 
is a Nash equilibrium of this new game.



Mixed strategy Nash equilibrium

Informally:
All players can randomize over available 

strategies.
In a mixed NE, player i’s mixed strategy 

must maximize his expected payoff, 
given all other player’s mixed strategies.



Mixed strategy Nash equilibrium

Key observations:
(1) All our definitions -- dominated 

strategies, iterated strict dominance, 
rationalizability -- extend to mixed 
strategies.

Note: any dominant strategy must be a 
pure strategy.



Mixed strategy Nash equilibrium

(2) We can extend the definition of
best response set identically:
Ri(p-i) is the set of mixed strategies for 
player i that maximize the expected 
payoff Πi (pi, p-i).



Mixed strategy Nash equilibrium

(2) Suppose pi ∈ Ri(p-i), and pi(si) > 0.  
Then si ∈ Ri(p-i).

(If not, player i could improve his payoff 
by not placing any weight on si at all.)



Mixed strategy Nash equilibrium

(3) It follows that Ri(p-i) can be 
constructed as follows:
(a) First find all pure strategy best 
responses to p-i; call this set Ti(p-i) ⊂ Si.
(b) Then Ri(p-i) is the set of all 
probability distributions over Ti, i.e.:

Ri(p-i) = Δ(Ti(p-i))



Mixed strategy Nash equilibrium

Moral:
A mixed strategy pi is

a best response to p-i

if and only if
every si with pi(si) > 0 is 

a best response to p-i



Example: coordination game

We’ll now apply this insight to the 
coordination game.

(1,2)(0,0)r

(0,0)(2,1)l

RL

Player 2

Player 1



Example: coordination game

Suppose player 1 puts probability p1 on l
and probability 1 - p1 on r.

Suppose player 2 puts probability p2 on L
and probability 1 - p2 on R.

We want to find all Nash equilibria
(pure and mixed).



Example: coordination game

• Step 1: Find best response mapping of 
player 1.
Given p2:
Π1(l, p2) = 2 p2

Π1(r, p2) = 1 - p2



Example: coordination game

• Step 1: Find best response mapping of 
player 1.

Then best
If p2 is: response is:
< 1/3 r (p1 = 0)
> 1/3 l (p1 = 1)
= 1/3 anything (0 ≤ p1 ≤ 1)



Example: coordination game

Best response of player 1:
1

0
0

p2

R1(p2)

1p1



Example: coordination game

• Step 2: Find best response mapping of 
player 2.

Then best
If p1 is: response is:

< 2/3 R (p2 = 0)
> 2/3 L (p2 = 1)
= 2/3 anything (0 ≤ p1 ≤ 1)



Example: coordination game

Best response of player 2:
1

0
0

p2

R1(p2)

1p1

R2(p1)



Example: coordination game

• Step 3: Find Nash equilibria.

As before, NE occur wherever the best 
response mappings cross.



Example: coordination game

Nash equilibria:
1

0
0

p2

R1(p2)

1p1

R2(p1)



Example: coordination game

Nash equilibria:
There are 3 NE:
p1 = 0, p2 = 0 ⇒ (r, R)
p1 = 1, p2 = 1 ⇒ (l, L)
p1 = 2/3, p2 = 1/3

Note: In last NE, both players get
expected payoff:
2/3 x 1/3 x 2 + 1/3 x 2/3 x 1 = 2/3.



The existence theorem

Theorem:
Any N-player game where all strategy 

spaces are finite has at least one Nash 
equilibrium.

Notes:
-The equilibrium may be mixed.
-There is a generalization if strategy 

spaces are not finite.



The existence theorem: proof

Let X = Δ(S1) × L × Δ(SN) be the product 
of all mixed strategy spaces.

Define BR : X → X by:
BRi(p1, …, pN) = Ri(p-i)



The existence theorem: proof

Key observations:
-Δ(Si) is a closed and bounded

subset of R|Si|

-Thus X is a closed and bounded subset 
of Euclidean space

-Also, X is convex: 
If p, p’ are in X, then so is any point on
the line segment between them.



The existence theorem: proof

Key observations (continued):
-BR is “continuous”
(i.e., best responses don’t change 
suddenly as we move through X)
(Formal statement: 

BR has a closed graph, with
convex and nonempty images)



The existence theorem: proof

By Kakutani’s fixed point theorem,
there exists (p1, …, pN) such that:
(p1, …, pN) ∈ BR(p1, …, pN)

From definition of BR, this implies:
pi ∈ Ri(p-i) for all i

Thus (p1, …, pN) is a NE.



The existence theorem

Notice that the existence theorem is not
constructive:

It tells you nothing about how players 
reach a Nash equilibrium, or an easy 
process to find one.

Finding Nash equilibria in general can be 
computationally difficult.



Discussion of Nash equilibrium

Nash equilibrium works best when
it is unique:

In this case, it is the only stable prediction 
of how rational players would play,

assuming common knowledge of rationality
and the structure of the game.



Discussion of Nash equilibrium

How do we make predictions about play
when there are multiple Nash equilibria?



1) Unilateral stability

Any Nash equilibrium is unilaterally stable:

If a regulator told players to play a given 
Nash equilibrium,
they have no reason to deviate.



2) Focal equilibria

In some settings, players may have prior 
preferences that “focus” attention on 
one equilibrium.

Schelling’s example (see MWG text):
Coordination game to decide where to 
meet in New York City.



3)  Focusing by prior agreement

If players agree ahead of time on a given 
equilibrium, they have no reason to 
deviate in practice.

This is a common justification, but can 
break down easily in practice:
when a game is played only once,
true enforcement is not possible.



4) Long run learning

Another common defense is that if players 
play the game many (independent) times,
they will naturally “converge” to some 
Nash equilibrium as a stable convention.

Again, this is dangerous reasoning:
it ignores a rationality model for
dynamic play.



Problems with NE

Nash equilibrium makes very strong 
assumptions:
-complete information
-rationality
-common knowledge of rationality
-“focusing” (if multiple NE exist)



Example

Find all NE (pure and mixed)
of the following game:

(2,0)(0,0)(0,0)(0.5,1)D

(0,1)(3,0)(0,3)(1,2)C

(0,3)(1,2)(2,2)(0,1)B

(1,1)(0,3)(4,0)(1,2)A

dcba
Player 2

Pl
ay

er
 1



MS&E 246: Lecture 5
Efficiency and fairness

Ramesh Johari



A digression

In this lecture:

We will use some of the insights of
static game analysis to understand
efficiency and fairness.



Basic setup

• N players
• Sn : strategy space of player n
• Z : space of outcomes
• z(s1, …, sN) :

outcome realized when (s1, …, sN) is played
• Πn(z) :

payoff to player n when outcome is z



(Pareto) Efficiency

An outcome z’ Pareto dominates z if:
Πn(z’) ≥ Πn(z) for all n,
and the inequality is strict for at least one n.

An outcome z is Pareto efficient if it is not 
Pareto dominated by any other z’ ∈ X.

⇒ Can’t make one player better off without
making another worse off.



Are equilibria efficient?

Recall the Prisoner’s dilemma:

(-2,-2)(-5,-1)cooperate

(-1,-5)(-4,-4)defect

cooperatedefect

Player 1

Player 2



Are equilibria efficient?

Recall the Prisoner’s dilemma:

Unique dominant strategy eq.: (D, D).

(-2,-2)(-5,-1)cooperate

(-1,-5)(-4,-4)defect

cooperatedefect

Player 1

Player 2



Are equilibria efficient?

But (C, C) Pareto dominates (D, D).

(-2,-2)(-5,-1)cooperate

(-1,-5)(-4,-4)defect

cooperatedefect

Player 1

Player 2



Are equilibria efficient?

• Moral:
Even when every player has a
strict dominant strategy,
the resulting equilibrium may be
inefficient.



Resource sharing

• N users want to send data across a
shared communication medium

• xn : sending rate of user n (pkts/sec)
• p(y) : probability a packet is lost

when total sending rate is y
• Πn(x) = net throughput of user n

= xn (1 - p(∑i xi) )



Resource sharing

• Suppose: p(y) = min( y/C, 1) 

C y

p(y)

1



Resource sharing

• Suppose: p(y) = min( y/C, 1) 
• Given  x:

Define   Y = ∑i xi and   Y-n = ∑i ≠ n xi 

• Thus, given x-n,

if xn + Y-n ≤ C, and zero otherwise



Pure strategy Nash equilibrium

• We only search for NE s.t. ∑i xi ≤ C
(Why?)

• In this region, first order conditions are:
1 – Y-n/C – 2xn/C = 0,  for all n



Pure strategy Nash equilibrium

• We only search for NE s.t. ∑i xi ≤ C 
(Why?)

• In this region, first order conditions are:
1 - Y/C = xn /C,  for all n

• If we sum over n and solve for Y, we find:
Y NE = N C /(N + 1)

• So: xn
NE = C / (N + 1), and

Πn(xNE) = C /(N + 1)2



Maximum throughput

• Note that total throughput
= ∑n Πn(x) = Y (1 - p(Y)) = Y (1 - Y /C)

• This is maximized at Y MAX = C  / 2
• Define xn

MAX = Y MAX /N = C / 2N

• Then (if N > 1):

Πn(xMAX) = C / 4N > C / (N + 1)2 = Πn(xNE)

So: xNE is not efficient.



Resource sharing: summary

• At NE, users’ rates are too high.  Why?
• When user n maximizes Πn, he ignores 

reduction in throughput he causes for other 
players (the negative externality)

• AKA: Tragedy of the Commons
• If externality is positive, 

then NE strategies are too low



An interference model

• N = 2 wireless devices want to send data
• Strategy = transmit power

S1 = S2 = { 0, P }
• Each device sees the other’s transmission 

as interference



An interference model

Payoff matrix (0 < ε << R2 < R1):

(ε, ε)(R1, 0)P

(0, R2)(0, 0)0

P0

Device 2

Device 1



An interference model

• (P, P ) is unique strict dominant strategy 
equilibrium (and hence unique NE)

• Note that (P, P) is not Pareto dominated 
by any pure strategy pair

• But…the mixed strategy pair (p1, p2) with
p1(0) = p2(0) = p1(P) = p2(P) = 1/2
Pareto dominates (P, P ) if Rn >> ε
(Payoffs: Πn(p1, p2) = Rn/4 + ε/4)



An interference model

• How can coordination improve 
throughput?

• Idea:
Suppose both devices agree to a protocol 
that decides when each device is allowed 
to transmit.



An interference model

• Cooperative timesharing:
Device 1 is allowed to transmit

a fraction q of the time.
Device 2 is allowed to transmit

a fraction 1 - q of the time.
Devices can use any mixed strategy

when they control the channel.



An interference model

Achievable payoffs via timesharing:

Π2

Π1

R2

R1

i.e.: over all q and
all strategy pairs (σ1, σ2)



An interference model

Achievable payoffs via timesharing:

Π2

Π1

R2

R1

Eq. payoffs

ε

ε



An interference model

• So when timesharing is used,
the set of Pareto efficient payoffs 
becomes:
{ (Π1, Π2) : Π1 = q R1, Π2 = (1 - q) R2 }

• For efficiency:
When device n has control,
it transmits at power P



An interference model

• So when timesharing is used,
the set of Pareto efficient payoffs 
becomes:
{ (Π1, Π2) : Π1 = q R1, Π2 = (1 - q) R2 }

• For efficiency:
When device n has control,
it transmits at power P



An interference model

• So when timesharing is used,
the set of Pareto efficient payoffs 
becomes:
{ (Π1, Π2) : Π1 = q R1, Π2 = (1 - q) R2 }

(Note: in general, the set of achievable 
payoffs is the convex hull of entries in 
the payoff matrix)



Choosing an efficient point

Which q should the protocol choose?

• Choice 1: Utilitarian solution
⇒ Maximize total throughput
maxq q R1 + (1- q) R2 ⇒ q = 1
Π1 = R1, Π2 = 0

Is this “fair”?



Choosing an efficient point

Which q should the protocol choose?

• Choice 2: Max-min fair solution
⇒ Maximize smallest Πn

maxq min { q R1, (1 - q) R2 } 
⇒ q R1 = (1 – q) R2,
so Π1 = Π2 (i.e., equalize rates)



Fairness

Fairness corresponds to a rule for choosing 
between multiple efficient outcomes.

Unlike efficiency, there is no universally 
accepted definition of “fair.”



Nash bargaining solution (NBS)

• Fix desirable properties
of a “fair” outcome

• Show there exists a unique outcome 
satisfying those properties



NBS: Framework

• T = { (Π1, Π2) : (Π1, Π2) is achievable }
• assumed closed, bounded, and convex

• Π* = (Π1*, Π2*) : status quo point
• each n can guarantee Πn* for himself

through unilateral action



NBS: Framework

• f(T, Π*) = (f1(T, Π*), f2(T, Π*)) ∈ T  :
a “bargaining solution”,
i.e., a rule for choosing a payoff pair

• What properties (axioms) should f satisfy?



Axioms

Axiom 1: Pareto efficiency

The payoff pair f(T, Π*) must be Pareto 
efficient in T.

Axiom 2: Individual rationality

For all n, fn(T, Π*) ≥ Πn*.



Axioms

Given v = (v1, v2), let
T + v = { (Π1 + v1,  Π2 + v2) : (Π1, Π2) ∈ T }
(i.e., a change of origin)

Axiom 3: Independence of utility origins

Given any v = (v1, v2),
f(T + v, Π* + v) = f(T, Π*) + v



Axioms

Given β = (β1, β2), let
β · T = { (β1 Π1, β2 Π2) : (Π1, Π2) ∈ T }
(i.e., a change of utility units)

Axiom 4: Independence of utility units

Given any β = (β1, β2), for each n we have
fn(β · T, (β1 Π1*, β2 Π2*)) = βn fn(T, Π*)



Axioms

The set T is symmetric if it looks the same 
when the Π1-Π2 axes are swapped:



Axioms

The set T is symmetric if it looks the same 
when the Π1-Π2 axes are swapped:

Not symmetric



Axioms

The set T is symmetric if it looks the same 
when the Π1-Π2 axes are swapped:

Symmetric



Axioms

The set T is symmetric if it looks the same 
when the Π1-Π2 axes are swapped.

Axiom 5: Symmetry

If T is symmetric and Π1* = Π2*,
then f1(T, Π*) = f2(T, Π*).



Axioms

Axiom 6: Independence of
irrelevant alternatives

Π∗

T

f(T, Π*)



Axioms

Axiom 6: Independence of
irrelevant alternatives

Π∗

T ’



Axioms

Axiom 6: Independence of
irrelevant alternatives

Π∗

T ’

f(T, Π*)



Axioms

Axiom 6: Independence of
irrelevant alternatives

If T ’ ⊂ T and f(T, Π*) ∈ T ’,
then f(T, Π*) = f(T ’, Π*).



Nash bargaining solution

Theorem (Nash):
There exists a unique f satisfying Axioms 
1-6, and it is given by:

f(T, Π*)
= arg maxΠ ∈ T : Π ≥ Π* (Π1 - Π1*)(Π2 - Π2*)
= arg maxΠ ∈ T : Π ≥ Π* ∑n = 1,2 log (Πn - Πn*)

(Sometimes called proportional fairness.)



Nash bargaining solution

• The proof relies on all the axioms

• The utilitarian solution and
the max-min fair solution do not satisfy
independence of utility units

• See course website for excerpt from MWG



Back to the interference model

• T = { (Π1, Π2) ≥ 0 :  
Π1 ≤ q R1, Π2 ≤ (1 - q) R2 , 0 ≤ q ≤ 1}

• Π* = (ε, ε)
• NBS: maxq log(q R1 - ε) + log((1 - q) R2 - ε)
Solution: q = 1/2 + (ε/2)(1/R1 – 1/R2)
e.g., when ε = 0,

Π1
NBS = R1/2,  Π2

NBS = R2/2



Comparisons

Assume ε = 0, R1 > R2

R2/2R1/21/2NBS

Max-min 
fair

Utilitarian 0R11

Π2Π1q



Summary

• When we say “efficient”, we mean
Pareto efficient.

• When we say “fair”, we must make clear 
what we mean!

• Typically, Nash equilibria are not efficient
• The Nash bargaining solution is one 

axiomatic approach to fairness



MS&E 246: Lecture 6
Dynamic games of perfect and 
complete information

Ramesh Johari



Outline

• Dynamic games
• Perfect information
• Game trees
• Strategies
• Backward induction



Dynamic games

Instead of playing simultaneously,
the rules dictate when players play,
and what they know about the past

when they play.



Example

Consider the following game:

Only pure NE is (l, R).

(0,0)(2,1)r

(1,2)(4,1)l

RL

Player 2

Player 1



Example: dynamic game

Suppose player 1 moves first, and player 2 
moves second: 1

2 2

RL

l r

RL

(4,1) (2,1)(1,2) (0,0)



Example: dynamic game

If player 1 plays l …
1

2 2

RL

l r

RL

(4,1) (2,1)(1,2) (0,0)



Example: dynamic game

…then player 2 plays R ⇒ Π1 = 1.
1

2 2

RL

l r

RL

(4,1) (2,1)(1,2) (0,0)



Example: dynamic game

If player 1 plays r …
1

2 2

RL

l r

RL

(4,1) (2,1)(1,2) (0,0)



Example: dynamic game

…then player 2 plays L ⇒ Π1 = 2!
1

2 2

RL

l r

RL

(4,1) (2,1)(1,2) (0,0)



Example: dynamic game

What if player 2 does not observe
player 1’s decision? 1

2 2

RL

l r

RL

(4,1) (2,1)(1,2) (0,0)

: Player 2 cannot distinguish between these nodes



Dynamics

What if player 2 does not observe
player 1’s decision?

Harder to predict what player 2 might do at 
stage 2.



Perfect information

In this lecture we will study (finite) 
dynamic games of perfect information:

These are games where all players observe 
the entire history of the game,
and the game terminates in
finitely many steps.

(NOTE: This is not complete information!)



Game tree

Fundamental structure: the game tree.
1) Each non-leaf node v is identified with a

unique player I(v).
2) All edges out from a node v correspond 

to actions available to I(v).
3) All leaves are labeled with the payoffs

for all players.



Game tree

1

2 2

RL

l r

RL

(4,1) (2,1)(1,2) (0,0)

What player plays
at this node?

What actions are
available to her?

What are payoffs if
a given sequence

of actions is played?



Game trees and extensive form

Idea: At each node v, player I(v) chooses 
an action; this leads to the next “stage.”

The game tree is also called the
extensive form of the game.



Strategies

For player 1 to “reason” about player 2,
there must be a prediction of what
player 2 would play in any of his nodes.

(See example at the beginning of lecture.)



Strategies

For player 1 to “reason” about player 2,
there must be a prediction of what
player 2 would play in any of his nodes.

Thus in a dynamic game, a strategy si is a 
complete contingent plan:

For each v such that I(v) = i,
si(v) specifies the action
of player i at node v.



Backward induction

We solve finite games of perfect 
information using backward induction.

Idea: find “optimal” decisions for players 
from the bottom of the tree to the top.



Backward induction

Formally: Suppose the game has L stages.

• Find the set of optimal actions for 
player I(v) at each node v in stage L
(possibly including mixed actions).

• Label each node v in stage L with 
payoffs from optimal actions, and 
remove any children.

• Return to (1) and repeat.



Backward induction

• Note this specifies complete strategies
for all players,
as well as the path(s) of actual play.

• Any finite dynamic game of perfect 
information has a backward induction 
solution.



Example

2.1 2.2

RL

l r

RL

(4,1) (2,1)(1,2) (0,0)

1.1



Example

2.1 2.2

RL

l r

RL

(4,1) (2,1)(1,2) (0,0)

1.1



Example

2.1 2.2

l r

(2,1)(1,2)

1.1



Example

2.1 2.2

l r

(2,1)(1,2)

1.1



Example

(2,1)
1.1



Backward induction solution

Strategies:
Player 1 plays r at node 1.1.
Player 2 plays R at node 2.1, and 

plays L at node 2.2.

The equilibrium path of play is (r, L).



Strategic form

The strategic (or normal) form is:

(0,0)

(1,2)

RR

(2,1)

(1,2)

RL

(0,0)(2,1)r

(4,1)(4,1)l

LRLL

Player 2

Player 1



Strategic form

What are all pure NE of the strategic form?
(r, RL) and (l, RR)

But (l, RR) is not credible:
Player 1 knows a rational player 2 would 
never play R in 2.2.



Strategic form

Any backward induction solution must be a 
NE of the strategic form,

but the converse does not necessarily hold.



MS&E 246: Lecture 7 
Stackelberg games

Ramesh Johari



Stackelberg games

In a Stackelberg game, one player
(the “leader”) moves first,

and all other players (the “followers”) 
move after him.



Stackelberg competition

• Two firms (N = 2)
• Each firm chooses a quantity sn ≥ 0
• Cost of producing sn : cn sn

• Demand curve:
Price = P(s1 + s2) = a – b (s1 + s2)

• Payoffs:
Profit = Πn(s1, s2) = P(s1 + s2) sn – cn sn



Stackelberg competition

In Stackelberg competition, firm 1 moves 
before firm 2.

Firm 2 observes firm 1’s quantity choice s1,
then chooses s2.



Stackelberg competition

We solve the game using
backward induction.

Start with second stage: 
Given s1, firm 2 chooses s2 as

s2 = arg maxs2 ∈ S2
Π2(s1, s2)

But this is just the best response R2(s1)!



Recall the best response given s1:

Differentiate and solve:

So:

Best response for firm 2



Firm 1’s decision

Backward induction:
Maximize firm 1’s decision, accounting for 

firm 2’s response at stage 2.

Thus firm 1 chooses s1 as
s1 = arg maxs1 ∈ S1

Π1(s1, R2(s1))



Firm 1’s decision

Define tn = (a - cn)/b.
If s1 ≤ t2, then payoff to firm 1 is:

If s1 > t2, then payoff to firm 1 is:



Firm 1’s decision

For simplicity, we assume that
2c2 ≤ a + c1

This assumption ensures that

is strictly decreasing for s1 > t2.

Thus firm 1’s optimal s1 must lie in [0, t2].



Firm 1’s decision

If s1 ≤ t2, then payoff to firm 1 is:



Firm 1’s decision

If s1 ≤ t2, then payoff to firm 1 is:



Firm 1’s decision

If s1 ≤ t2, then payoff to firm 1 is:

Thus optimal s1 is:



Stackelberg equilibrium

So what is the Stackelberg equilibrium?

Must give complete strategies:
s1* = (a - 2c1 + c2)/2b

s2*(s1) = (t2/2 - s1/2)+

The equilibrium outcome is that
firm 1 plays s1*, and firm 2 plays s2*(s1*).



Comparison to Cournot

Assume c1 = c2 = c.
In Cournot equilibrium:

(1) s1 = s2 = t/3.
(2) Π1 = Π2 = (a - c)2/(9b).

In Stackelberg equilibrium:
(1) s1 = t/2, s2 = t/4.
(2) Π1 = (a - c)2/(8b), Π2 = (a - c)2/(16b) 



Comparison to Cournot

So in Stackelberg competition:
-the leader has higher profits
-the follower has lower profits
This is called a first mover advantage.



Stackelberg competition: moral

Moral:
Additional information available can
lower a player’s payoff,
if it is common knowledge that the player 
will have the additional information.

(Here: firm 1 takes advantage of knowing 
firm 2 knows s1.)



MS&E 246: Lecture 8
Dynamic games of complete and 
imperfect information

Ramesh Johari



Outline

• Imperfect information
• Information sets
• Perfect recall
• Moves by nature
• Strategies
• Subgames and subgame perfection



Imperfect information

Informally:
In perfect information games, the history is 

common knowledge.
In imperfect information games, players 

move without necessarily knowing the 
past.



Game trees

We adhere to the same model of
a game tree as in Lecture 6.

1) Each non-leaf node v is identified with a
unique player I(v).

2) All edges out from a node v correspond 
to actions available to I(v).

3) All leaves are labeled with the payoffs
for all players.



Information sets

We represent imperfect information by 
combining nodes into information sets.

An information set h is:
-a subset of nodes of the game tree
-all identified with the same player I(h)
-with the same actions available to

I(h) at each node in h



Information sets

Idea:
When player I(h) is in information set h, 
she cannot distinguish between
the nodes of h.



Information sets

Let H denote all information sets.
The union of all sets h ∈ H

gives all nodes in the tree.

(We use h(v) to denote the information set 
corresponding to a node v.)



Perfect information

Formal definition of perfect information:
All information sets are singletons.



(1,2)

Example

Coordination game without observation:
1

2 2

RL

l r

RL

(2,1) (0,0)(0,0)

: Player 2 cannot distinguish between these nodes



Perfect recall

We restrict attention to games of
perfect recall:

These are games where the information sets 
ensure a player never forgets what
she once knew, or what she played.

[Formally:
If v, v’ are in the same information set h, neither is a predecessor of the other in the 
game tree.
Also, if v’, v’’ are in the same information set, and v is a predecessor of v’, then there 
must exist a node w ∈ h(v) that is a predecessor of v’’, such that the action taken on 
the path from v to v’ is the same as the action taken on the path from w to v’’. ]



Moves by nature

We allow one additional possibility:
At some nodes, Nature moves.
At such a node v, the edges are labeled with 

probabilities of being selected.
Any such node v models an exogenous event.

[Note: Players use expected payoffs.]



Strategies

The strategy of a player is a function from 
information sets of that player
to an action in each information set.

(In perfect information games,
strategies are mappings from nodes to 
actions.)



Example

1

222

l
m

r

L R R BL A



Example

1

222

l
m

r

L R R BL A

Player 1: 1 information set
3 strategies – l, m, r



Example

1

222

l
m

r

L R R BL A

Player 2: 2 information sets
4 strategies – LA, LB, RA, RB



Subgames

A (proper) subgame is a subtree that:
-begins at a singleton information set;
-includes all subsequent nodes;
-and does not cut any information sets.

Idea:
Once a subgame begins, subsequent 
structure is common knowledge.



Example

1.1

2.22.12.1

l
m

r

L R R BL A

This game has two subgames, rooted at
1.1 and 2.2.



Extending backward induction

In games of perfect information,
any subtree is a subgame.

What is the analog of backward induction?

Try to find “equilibrium” behavior from the 
“bottom” of the tree upwards.



Subgame perfection

A strategy vector (s1, …, sN) is a 
subgame perfect Nash equilibrium (SPNE)
if it induces a Nash equilibrium in 
(the strategic form of) every subgame.

(In games of perfect information,
SPNE reduces to backward induction.)



Subgame perfection

“Every subgame” includes the game itself.
Idea:

-Find NE for “lowest” subgame
-Replace subgame subtree with 

equilibrium payoffs
-Repeat until we reach the root node

of the original game



Subgame perfection

• As before, a SPNE specificies a 
complete contingent plan for each 
player.

• The equilibrium path is the actual play of 
the game under the SPNE strategies.

• As long as the game has finitely many 
stages, and finitely many actions at each 
information set, an SPNE always exists.



MS&E 246: Lecture 9
Sequential bargaining

Ramesh Johari



Nash bargaining solution

Recall Nash’s approach to bargaining:

The planner is given the set of achievable 
payoffs and status quo point.

Implicitly:
The process of bargaining does not matter.



Dynamics of bargaining

In this lecture:

We use a dynamic game of perfect 
information to model the process of 
bargaining.



An interference model

Recall the interference model:
• Two devices
• Device 1 given channel a

fraction q of the time
• For efficiency:

When device n has control,
it transmits at full power P 



An interference model

• When timesharing is used,
the set of Pareto efficient payoffs 
becomes:
{ (Π1, Π2) : Π1 = q R1, Π2 = (1 - q) R2 }

• We now assume the devices bargain 
through a sequence of alternating offers.



Alternating offers

• At time 0:
• Stage 0A:

Device 1 proposes a choice of q
(denoted q1)

• Stage 0B:
Device 2 decides to accept or reject
device 1’s offer



Two period model

Assumption 1:
If device 2 rejects at stage 0B,
then predetermined choice Q ∈ [0, 1]
is implemented at time 1



Discounting

Assumption 2:
Devices care about delay: 
Any payoff received by device i at time k
is discounted by δi

k.

0 < δi < 1: discount factor of device i



Game tree

0A

0B

1

q1

ACCEPT

REJECT

Device 1 makes
initial offer

Device 2 accepts
or rejects

Π1 = q1R1

Π2 = (1 - q1)R2

Π1 = δ1QR1

Π2 = δ2(1 - Q)R2



Game tree

• This is a dynamic game of perfect 
information.

• We solve it using backward induction.



Backward induction

1. Given q1, at Stage 0B:

• Device 2 rejects if:
δ2 (1 - Q) R2 >  (1 - q1) R2



Backward induction

1. Given q1, at Stage 0B:

• Device 2 rejects (s2(q1) = R) if:
q1 >  1 - δ2 (1 - Q)

• Device 2 accepts (s2(q1) = A) if:
q1 <  1 - δ2 (1 - Q)

• Device 2 is indifferent
(s2(q1) ∈ { A, R }) if
q1 =  1 - δ2 (1 - Q)



Backward induction

2. At Stage 0A:

• Device 1 maximizes Π1(q1, s2(q1))
over offers ( 0 ≤ q1 ≤ 1 )

• Claim: Maximum value of Π1 is

(1 - δ2 ( 1 - Q)) R1



Backward induction

2. At Stage 0A:

• Claim: Maximum value of Π1 is

Π1
MAX = ( 1 - δ2 ( 1 - Q) ) R1

• Proof:
(a) Maximum is achievable:
If q1 increases to  1 - δ2( 1 - Q),
then Π1 increases to  Π1

MAX



Backward induction

2. At Stage 0A:

• Claim: Maximum value of Π1 is

Π1
MAX = ( 1 - δ2 ( 1 - Q) ) R1

• Proof:
(b) If q1 > 1 - δ2( 1 - Q), then Π1 < Π1

MAX:

Device 2 rejects   ⇒   Π1 = δ1 Q R1



Backward induction

2. At Stage 0A:

• Claim: Maximum value of Π1 is

Π1
MAX = ( 1 - δ2 ( 1 - Q) ) R1

• Proof:
(b) If q1 > 1 - δ2( 1 - Q), then Π1 < Π1

MAX:

But note that:    δ1 Q + δ2 (1 - Q)  <  1



Backward induction

2. At Stage 0A:

• Claim: Maximum value of Π1 is

Π1
MAX = ( 1 - δ2 ( 1 - Q) ) R1

• Proof:
(b) If q1 > 1 - δ2( 1 - Q), then Π1 < Π1

MAX:

But note that:    δ1 Q <  1 - δ2 (1 - Q) 



Backward induction

2. At Stage 0A:

• Claim: Maximum value of Π1 is

Π1
MAX = ( 1 - δ2 ( 1 - Q) ) R1

• Proof:
(b) If q1 > 1 - δ2( 1 - Q), then Π1 < Π1

MAX:

So   δ1 Q R1 < ( 1 - δ2 (1 - Q) ) R1



Backward induction

2. At Stage 0A:

• Best responses for device 1 :

All choices of q1 that achieve Π1
MAX

The only possibility:

q1* = 1 - δ2 (1 - Q) 



Backward induction

2. At Stage 0A:

• If s2(q1*) = reject,
no best response exists for device 1!

• If s2(q1*) = accept,
best response for device 1 is q1 = q1*



Unique SPNE

What is the unique SPNE?

• Must give strategies for both players!



Unique SPNE

What is the unique SPNE?

• Device 1:
At Stage 0A, offer q1 = q1*

• Device 2:
At Stage 0B,
accept if q1 ≤ q1*, reject if q1 > q1*



Payoffs at unique SPNE

• So the offer of device 1 is
accepted immediately by device 2.

• Device 1 gets:   Π1 = ( 1 - δ2(1 - Q)) R1

• Device 2 gets:   Π2 = δ2(1 - q0) R2



Infinite horizon

More realistic model:

Devices alternate offers indefinitely.

For simplicity: assume δ1 = δ2 = δ



Finite horizon

0A 0Bq10

ACCEPT

REJECT

Π1 = q10R1

Π2 = (1 - q10)R2

1
Device 1 Device 2



Infinite horizon

0A 0Bq10

ACCEPT

REJECT

Π1 = q10R1

Π2 = (1 - q10)R2

Π1 = δq21R1

Π2 = δ(1 - q21)R2

1A 1B

ACCEPT

REJECTq21
2A

. . .

Device 1 Device 1Device 2 Device 2 Device 1



Infinite horizon: formal model

• Device 1 offers q1k at stage kA, for k even
• Device 2 offers q2k at stage kA, for k odd

• Device 2 accepts/rejects stage kA offer
at stage kB, for k even

• Device 1 accepts/rejects stage kA offer
at stage kB, for k odd



Infinite horizon: formal model

• Payoffs:
Π1 = Π2 = 0 if no offer ever accepted
(similar to status quo in NBS)



Infinite horizon: formal model

• Payoffs:
If offer made at stage kA by player i
accepted at stage kB :

Π1 = δk qik R1

Π2 = δk (1 - qik ) R2



Infinite horizon

• Can’t use backward induction!

• Use stationarity:

Subgame rooted at 1A is
the same as the original game,
with roles of 1 and 2 reversed. 



SPNE

Define V and v:

V R1 = highest time 0 payoff to device 1 
among all SPNE

v R1 = lowest time 0 payoff to device 1 
among all SPNE



SPNE

Then if device 2 rejects at 0B:

V R2= highest time 1 payoff to device 2
among all SPNE

v R2= lowest time 1 payoff to device 2
among all SPNE



SPNE: Two inequalities

• v R1 ≥ (1 - δ V ) R1

At Stage 0B:
Device 2 will accept any q10 < 1 - δ V

So at Stage 0A:
Device 1 must earn at least (1 - δ V ) R1



SPNE: Two inequalities

• V R1 ≤ (1 - δ v) R1

If offer q10 is accepted at stage 0B,
device 2 must get a timeshare
of at least δ v

⇒ q10 ≤ 1 - δ v



SPNE: Two inequalities

• V R1 ≤ (1 - δ v) R1

If offer q10 is rejected at stage 0B,
device 1 earns at most δ (1 - v) R1
since device 2 earns at least δ v R2

⇒ Π1 ≤ δ (1 - v) R1 ≤ (1 - δ v) R1



Combining inequalities

• v ≤ V

• v ≥ 1 - δ V

• V ≤ 1 - δ v



Combining inequalities

• v ≤ V

• v + δ V ≥ 1
• V + δ v ≤ 1

So: V + δ v ≤ v + δ V

⇒ (1 - δ) V ≤ (1 - δ) v
⇒ V = v



Unique SPNE

• So V = 1 - δ V ⇒

• SPNE strategies for device 1:
At Stage kA , k even:

Offer q1k = 1 - δ V

At Stage kB , k odd:
Accept if q2k ≥ δ V



Unique SPNE

• So V = 1 - δ V ⇒

• SPNE strategies for device 2:
At Stage kA , k odd:

Offer q2k = δ V

At Stage kB , k even:
Accept if q1k ≤ 1 - δ V



Unique SPNE: Payoffs

Stage 0A offer by device 1 is
accepted in Stage 0B by device 2.



Infinite horizon: Discussion

• Outcome is efficient:
No “lost utility” due to discounting

• Stationary SPNE strategies:
Actions do not depend on time k

• First mover advantage:
Π1

SPNE >  Π2
SPNE



Shortening time periods

Shorten each time step to length t < 1 …
… Same as changing discount factor to δt 

As t → 0, note that Πi
SPNE → Ri/2.

Nash bargaining solution!



In general

If δ1 ≠ δ2 : 
Find SPNE using two period model:

Note that Q must be SPNE payoff when 
device 2 offers first

Can show (for an appropriate limit) that 
weighted NBS obtained as t → 0:
More patient player weighted higher



Summary

• Alternating offers: finite horizon
Backward induction solution

• Alternating offers: infinite horizon
Unique SPNE
Relation to Nash bargaining solution
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What is a repeated game?

A repeated game is:

A dynamic game constructed by playing
the same game over and over.

It is a dynamic game of imperfect 
information.



This lecture

• Finitely repeated games

• Infinitely repeated games
• Trigger strategies
• The folk theorem



Stage game

At each stage, the same game is played:
the stage game G.

Assume:
• G is a simultaneous move game
• In G, player i has:

• Action set Ai

• Payoff Pi(ai, a-i)



Finitely repeated games

G(K) : G is repeated K times

Information sets:
All players observe outcome of each stage.

What are:
strategies?  payoffs?  equilibria?



History and strategies

Period t history ht: 
ht = (a(0), …, a(t-1)) where
a(τ) = action profile played at stage τ

Strategy si: 
Choice of stage t action si(ht) ∈ Ai

for each history ht  

i.e. ai(t) = si(ht)



Payoffs

Assume payoff = sum of stage game payoffs



Example: Prisoner’s dilemma

Recall the Prisoner’s dilemma:

(2,2)(0,4)cooperate

(4,0)(1,1)defect

cooperatedefect

Player 1

Player 2



Example: Prisoner’s dilemma

Two volunteers
Five rounds
No communication 

allowed!

511111Player 2

511111Player 1

Total54321Round



SPNE

Suppose aNE is a stage game NE.
Any such NE gives a SPNE:

Player i plays ai
NE at every stage, 

regardless of history.

Question: Are there any other SPNE?



SPNE

How do we find SPNE of G(K)?

Observe:

Subgame starting after history ht is 
identical to G(K - t)



SPNE: Unique stage game NE

Suppose G has a unique NE aNE

Then regardless of period K history hK ,
last stage has unique NE aNE

⇒ At SPNE, si(hK) = ai
NE



SPNE: Backward induction 

At stage K - 1, given s-i(·), player i chooses 
si(hK - 1) to maximize:

Pi(si(hK - 1), s-i(hK - 1))   +    Pi(s(hK))

payoff at stage K -1 payoff at stage K



SPNE: Backward induction 

At stage K - 1, given s-i(·), player i chooses 
si(hK - 1) to maximize:

Pi(si(hK - 1), s-i(hK - 1))   +    Pi(aNE)

payoff at stage K -1 payoff at stage K

We know: at last stage, aNE is played.



SPNE: Backward induction 

At stage K - 1, given s-i(·), player i chooses 
si(hK  - 1) to maximize:

Pi(si(hK - 1), s-i(hK - 1))

payoff at stage K -1

⇒ Stage game NE again!



SPNE: Conclusion

Theorem:
If stage game has unique NE aNE,
then finitely repeated game has
unique SPNE:

si(ht) = ai
NE for all ht



Example: Prisoner’s dilemma

Moral: “Cooperate” should never be played.

Axelrod’s tournament (1980):

Winning strategy was “tit for tat”:
Cooperate if and only if
your opponent did so at the last stage



SPNE: Multiple stage game NE

Note: 
If multiple NE exist for stage game NE,

there may exist SPNE where 
actions are played that appear in
no stage game NE

(See Gibbons, 2.3.A)



Infinitely repeated games

• History, strategy definitions same as 
finitely repeated games

• Payoffs:
Sum might not be finite!



Discounting

Define payoff as:

i.e., discounted sum of stage game payoffs
This game is denoted G(δ, ∞)

(Note: (1 - δ) is a normalization)



Discounting

Two interpretations:

1. Future payoffs worth less
than today’s payoffs

2. Total # of stages is a
geometric random variable



Folk theorems

• Major problem with infinitely repeated 
games:

If players are patient enough,
SPNE can achieve “any” reasonable 
payoffs.



Prisoner’s dilemma

Consider the following strategies, (s1, s2):
1. Play C at first stage.
2. If ht = ( (C,C), …, (C,C) ), 

then play C at stage t.
Otherwise play D.

i.e., punish the other player for defecting



Prisoner’s dilemma

Note: G(δ, ∞) is stationary

Case 1: Consider any subgame where at 
least one player has defected in ht.

Then (D,D) played forever.
This is NE for subgame, 

since (D,D) is stage game NE.



Prisoner’s dilemma

Step 2: Suppose ht = ( (C,C), …, (C,C) ).

Player 1’s options:
(a) Follow s1 ⇒ play C forever
(b) Deviate at time t ⇒ play D forever



Prisoner’s dilemma

Given s2:
Playing C forever gives payoff:

(1- δ) ( P1(C,C) + δ P1(C,C) + … ) = P1(C,C)

Playing D forever gives payoff:

(1- δ) ( P1(D,C) + δ P1(D,D) + … )

= (1-δ) P1(D,C) + δ P1(D,D)



Prisoner’s dilemma

So cooperate if and only if:

P1(C,C) ≥ (1 - δ) P1(D,C) + δ P1(D,D)

Note: if P1(C,C) > P1(D,D),
then this is always true for δ close to 1

Conclude:
If δ close to 1, then (s1, s2) is an SPNE



Prisoner’s dilemma

In our game:  

Need   2 ≥ (1 - δ) 4 + δ ⇒   δ ≥ 2/3

So cooperation can be sustained if 
time horizon is finite but uncertain.



Trigger strategies

In a (Nash) trigger strategy for player i :
1. Play ai at first stage.
2. If ht = ( a, …, a ), 

then play ai at stage t.
Otherwise play ai

NE.



Trigger strategies

If a Pareto dominates aNE, 
trigger strategies will be an SPNE
for large enough δ

Formally: need
Pi(a) > (1 - δ) Pi(ai’, a-i) + δ Pi(aNE)
for all players i and actions ai’.



Achievable payoffs

Achievable payoffs:
T = Convex hull of { ( P1(a), P2(a) ) : ai ∈ Si }

e.g., in Prisoner’s Dilemma:

(0,4)

(4,0)

(2,2)

(1,1)

P1

P2



Achievable payoffs and SPNE

A key result in repeated games:

Any “reasonable” achievable payoff can be 
realized in an SPNE of the repeated game,
if players are patient enough.

Simple proof: generalize prisoner’s dilemma.



Randomization

• To generalize, suppose before stage t
all players observe i.i.d. uniform r.v. Ut

• History:
ht = (a(0), …, a(t-1), U0, …, Ut )

• Players can use Ut to coordinate
strategies at stage t



Randomization

E.g., suppose players want to achieve
P = α P(a) + (1 - α) P(a’)

If Ut ≤ α : Player i plays ai

If Ut > α : Player i plays ai’

We’ll call this the P-achieving action for i.
(Uniquely defined for all P ∈ T.)



Randomization

E.g., Prisoner’s Dilemma
Let P = (3,1).
P‐achieving actions:
Player 1 plays C if Ut ≤ ½

and D if Ut > ½
Player 2 plays C if Ut ≤ ½

and C if Ut > ½

(0,4)

(4,0)

(2,2)

(1,1)

P1

P2

(3,1)



Randomization and triggering

So now suppose P ∈ T and:
Pi > Pi(aNE) for all i

Trigger strategy: 
Punish forever (by playing ai

NE) if opponent 
deviates from P-achieving action



Randomization and triggering

Both players using this trigger strategy
is again an SPNE for large enough δ.

Formally: need
(1 - δ) Pi(pi, p-i) + δ Pi

> (1 - δ) Pi(ai’, p-i) + δ Pi(aNE)
for all players i and actions ai’.
(Here p is P-achieving action for player i, and
p-i is P-achieving action vector for all other players.)



Randomization and triggering

Both players using this trigger strategy
is again an SPNE for large enough δ.

Formally: need
(1 - δ) Pi(pi, p-i) + δ Pi

> (1 - δ) Pi(ai’, p-i) + δ Pi(aNE)
for all players i and actions ai’.
(At time t:
LHS is payoff if player i does not deviate after seeing Ut; 
RHS is payoff if player i deviates to ai’ after seeing Ut)



Folk theorem

Theorem (Friedman, 1971): 
Fix a Nash equilibrium aNE, and
P ∈ T such that 

Pi > Pi(aNE)  for all i

Then for large enough δ,
there exists an SPNE s such that:

Πi(s) = Pi



Minimax payoffs

What is the minimum payoff
Player 1 can guarantee himself?



Minimax payoffs

What is the minimum payoff
Player 1 can guarantee himself?

Given a2, this is the
highest payoff

player 1 can get…



Minimax payoffs

What is the minimum payoff
Player 1 can guarantee himself?

…so Player 1 can guarantee
himself this payoff if he knows
how Player 2 is punishing him



Minimax payoffs

What is the minimum payoff
Player 1 can guarantee himself?

This is m1, the minimax value of Player 1.



Generalization

Theorem (Fudenberg and Maskin, 1986):
Folk theorem holds for all P such that
Pi > mi for all i

(Technical note:
This result requires that dimension of T = # of players)



Finite vs. infinite

Theorem (Benoit and Krishna, 1985):
Assume: for each i, we can find
two NE aNE, aNE such that Pi(aNE) > Pi(aNE)

Then as K →∞,
set of SPNE payoffs of G(K)
approaches { P ∈ T : Pi > mi }

(Same technical note as Fudenberg-Maskin applies)



Finite vs. infinite

In the unique Prisoner’s Dilemma NE,
only one NE exists

⇒ Benoit-Krishna result fails

Note at Prisoner’s Dilemma NE,
each player gets minimax value.



Summary

Repeated games are a simple way to model 
interaction over time.

(1) In general, too many SPNE ⇒
not very good predictive model

(2) However, can gain insight from
structure of SPNE strategies
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Dynamic games

In our discussion of dynamic games of 
complete information,
we studied two main types:

• Perfect information
• Imperfect information
In both cases, subgame perfect NE emerged 

as a natural way to capture “sequential 
rationality” (or credibility).



Possible problems

However, subgame perfection can give rise 
to two possible issues.

In some cases, it is overly restrictive as a 
predictive tool:
there are “not enough” SPNE.

In some cases, it is not useful as a 
predictive tool:
there are too many SPNE.



SPNE: overly restrictive?

Consider the following game:

(This is called the “centipede” game.)

1 2

Stop

Continue
1 1

. . . 

Stop Stop Stop

Continue Continue

(1,1) (0,3) (2,2) (99,99)

2

Stop

Continue

(98,101)

(100,100)



SPNE: overly restrictive?

• In last information set, player 2 prefers 
to “stop” instead of “continue”

• Inductively, in each information set each 
player prefers to “stop” instead of 
“continue”

• Equilibrium payoffs: (1,1)
• Is this a reasonable prediction of play?



SPNE: overly restrictive?

The centipede game reveals a key flaw in 
the definition of SPNE:
If play ever reaches a subgame off the 
equilibrium path of play,
then rationality must have failed already.
But SPNE assumes rational behavior in 
every subgame!



SPNE: not restrictive enough?

• In repeated games, we saw the folk 
theorem(s): with enough patience,
any individually rational payoffs
can be sustained by an SPNE.

• Too many equilibria for predictive use



SPNE: not restrictive enough?

Other problems can occur in situations 
where there are “not enough subgames”
to rule out equilibria.



SPNE: not restrictive enough?

(3,0)

2.1

RL RL

(-1,-1) (-1,-1) (2,1)

1.1

ExitEntry1

Entry2

• Two firms
• First firm decides if/how to enter
• Second firm can choose to “fight”

(0,2)



Entry example

Note that this game only has one subgame.
Thus SPNE are any NE of strategic form.

(2,1)(-1,-1)Entry2

Exit

Entry1

(0,2)(0,2)

(3,0)(-1,-1)

RL

Firm 2

Firm 1



Entry example

Two pure NE of strategic form:
(Entry1, R) and (Exit, L)

(2,1)(-1,-1)Entry2

Exit

Entry1

(0,2)(0,2)

(3,0)(-1,-1)

RL

Firm 2

Firm 1



SPNE: not restrictive enough?

(3,0)

2.1

RL RL

(-1,-1) (-1,-1) (2,1)

1.1

ExitEntry1

Entry2

But firm 1 should “know” that if
it chooses to enter,
firm 2 will never “fight.”

(0,2)



SPNE: not restrictive enough?

(3,0)

2.1

RL RL

(-1,-1) (-1,-1) (2,1)

1.1

ExitEntry1

Entry2

So in this situation, there are again
too many SPNE.

(0,2)



SPNE: not restrictive enough?

A solution to the problem of the entry 
game is to include beliefs as part of the
solution concept:
Firm 2 should never fight, regardless of 
what it believes firm 1 played.

(We will study such an approach in the last 
part of the course.)



MS&E 246: Lecture 12
Static games of
incomplete information

Ramesh Johari



Incomplete information

• Complete information means
the entire structure of the game
is common knowledge

• Incomplete information means
“anything else”



Cournot revisited

Consider the Cournot game again:
• Two firms (N = 2)
• Cost of producing sn : cn sn

• Demand curve:
Price = P(s1 + s2) = a – b (s1 + s2)

• Payoffs:
Profit = Πn(s1, s2) = P(s1 + s2) sn – cn sn



Cournot revisited

Suppose ci is known only to firm i.
Incomplete information:

Payoffs of firms are not common 
knowledge.

How should firm i reason about what it 
expects the competitor to produce?



Beliefs

A first approach:
Describe firm 1’s beliefs about firm 2.
Then need firm 2’s beliefs about firm 1’s 

beliefs…
And firm 1’s beliefs about firm 2’s beliefs 

about firm 1’s beliefs…
Rapid growth of complexity!



Harsanyi’s approach

Harsanyi made a key breakthrough in the 
analysis of incomplete information 
games:

He represented a static game of 
incomplete information as a
dynamic game of complete but
imperfect information.



Harsanyi’s approach

• Nature chooses (c1, c2) according to some 
probability distribution.

• Firm i now knows ci, but opponent only 
knows the distribution of ci.

• Firms maximize expected payoff.



Harsanyi’s approach

All firms share the same beliefs about 
incomplete information, determined by the 
common prior.

Intuitively:
Nature determines “who we are” at time 0,
according to a distribution that is common
knowledge.



Bayesian games

In a Bayesian game, player i’s preferences 
are determined by his type θi ∈ Ti ;
Ti is the type space for player i.

When player i has type θi,
his payoff function is: Πi(s ; θi)



Bayesian games

A Bayesian game with N players is a 
dynamic game of N + 1 stages.

Stage 0: Nature moves first, and
chooses a type θi for each player i,
according to some joint distribution
P(θ1, …, θN) on T1 x L x TN. 



Bayesian games

Player i learns his own type θi,
but not the types of other players.

Stage i: Player i chooses an action
from Si. 

After stage N: payoffs are realized.



Bayesian games

An alternate, equivalent interpretation:

1) Nature chooses players’ types.
2) All players simultaneously

choose actions.
3) Payoffs are realized.



Bayesian games

• How many subgames are there?

• How many information sets does
player i have?

• What is a strategy for player i?



Bayesian games

• How many subgames are there?
ONE – the entire game.

• How many information sets does
player i have?

ONE per type θi.
• What is a strategy for player i?

A function from Ti → Si.



Bayesian games

One subgame ⇒
SPNE and NE are identical concepts.

A Bayesian equilibrium
(or Bayes-Nash equilibrium)
is a NE of this dynamic game.



Expected payoffs

How do players reason about uncertainty 
regarding other players’ types?

They use expected payoffs.
Given s-i(·), player i chooses ai = si(θi)

to maximize 
E[ Πi( ai , s-i(θ-i) ; θi ) | θi ]



Bayesian equilibrium

Thus s1(·), …, sN(·)
is a Bayesian equilibrium if and only if:

si(θi) ∈ arg maxai ∈ Si
E[ Πi( ai , s-i(θ-i) ; θi) | θi ]

for all θi, and for all players i.

[Notation: s-i(θ-i) = (s1(θ1), …, si-1(θi-1), si+1(θi+1), …, sN(θN)) ]



Bayesian equilibrium

The conditional distribution P(θ-i | θi) is 
called player i’s belief.

Thus in a Bayesian equilibrium,
players maximize expected payoffs
given their beliefs.

[ Note: Beliefs are found using Bayes’ rule:
P(θ-i | θi) = P(θ1, …, θN)/P(θi) ]



Bayesian equilibrium

Since Bayesian equilibrium is a NE
of a certain dynamic game
of imperfect information,
it is guaranteed to exist
(as long as type spaces Ti are finite
and action spaces Si are finite).



Cournot revisited

Back to the Cournot example:
Let’s assume c1 is common knowledge,

but firm 1 does not know c2.
Nature chooses c2 according to:

c2 = cH, w/prob. p
= cL, w/prob. 1 - p

(where cH > cL)



Cournot revisited

These are also informally called
games of asymmetric information:
Firm 2 has information that
firm 1 does not have.



Cournot revisited

• The type of each firm is their
marginal cost of production, ci.

• Note that c1, c2 are independent.
• Firm 1’s belief:

P(c2 = cH | c1) = 1 - P(c2 = cL | c1) = p
• Firm 2’s belief: Knows c1 exactly



Cournot revisited

• The strategy of firm 1 is the quantity s1.
• The strategy of firm 2 is a function:

s2(cH) : quantity produced if c2 = cH

s2(cL) : quantity produced if c2 = cL



Cournot revisited

We want a NE of the dynamic game.
Given s1 and c2, Firm 2 plays a

best response.
Thus given s1 and c2, Firm 2 produces:



Cournot revisited

Given s2(·) and c1,
Firm 1 maximizes expected payoff.

Thus Firm 1 maximizes:

E[ Π1 (s1, s2(c2) ; c1) | c1 ] =

[p P(s1 + s2(cH)) + (1 - p)P(s1 + s2(cL))] s1 – c1s1



Cournot revisited

• Recall demand is linear: P(Q) = a - b Q

• So expected payoff to firm 1 is:
[ a - b(s1+ p s2(cH) + (1 - p)s2(cL)) ]s1 - c1 s1

• Thus firm 1 plays best response to
expected production of firm 2.



Cournot revisited: equilibrium

• A Bayesian equilibrium has 3 unknowns:
s1, s2(cH), s2(cL)

• There are 3 equations:
Best response of firm 1 given s2(cH), s2(cL)
Best response of firm 2 given s1,

when type is cH

Best response of firm 2 given s1,
when type is cL



Cournot revisited: equilibrium

• Assume all quantities are positive at BNE
(can show this must be the case)

• Solution:
s1 = [ a - 2c1 + pcH + (1 - p)cL ]/3
s2(cH) = [a - 2cH + c1]/3 + (1 - p)(cH - cL)/6
s2(cL) = [a - 2cL + c1]/3 - p(cH - cL)/6



Cournot revisited: equilibrium

When p = 0, complete information:
Both firms know c2 = cL ⇒ NE (s1

(0), s2
(0))

When p = 1, complete information:
Both firms know c2 = cH ⇒ NE (s1

(1), s2
(1))

For 0 < p < 1, note that:
s2(cL) < s2

(0),  s2(cH) > s2
(1),  s1

(0) < s1 < s1
(1)

Why?



Coordination game

Consider coordination game with 
incomplete information:

(1,2 + t2)(0,0)r

(0,0)(2 + t1,1)l

RL

Player 2

Player 1



Coordination game

t1, t2 are independent
uniform r.v.’s on [0, x].

Player i learns ti, but not t-i.

(1,2 + t2)(0,0)r

(0,0)(2 + t1,1)l

RL

Player 2

Player 1



Coordination game

Types: t1, t2

Beliefs:
Types are independent, so
player i believes t-i is uniform[0, x]

Strategies:
Strategy of player i is a function si(ti)



Coordination game

We’ll search for a specific form of
Bayesian equilibrium:

Assume each player i has a threshold ci,
such that the strategy of player 1 is:
s1(t1) = l if t1 > c1 ; = r if t1 ≤ c1.
and the strategy of player 2 is:
s2(t2) = R if t2 > c2 ; = L if t2 ≤ c2.



Coordination game

Given s2(·) and t1, player 1 maximizes 
expected payoff:

If player 1 plays l: 
E [ Π1(l, s2(t2); t1) | t1 ] = 

(2 + t1) · P(t2 ≤ c2) + 0 · P(t2 > c2)
If player 1 plays r: 

E [ Π1(r, s2(t2) ; t1) | t1 ] = 
0 · P(t2 ≤ c2) + 1 · P(t2 > c2)



Coordination game

Given s2(·) and t1, player 1 maximizes 
expected payoff:

If player 1 plays l: 
E [ Π1(l, s2(t2) ; t1) | t1 ] = 

(2 + t1)(c2/x) 
If player 1 plays r: 

E [ Π1(r, s2(t2) ; t1) | t1 ] = 
1 - c2/x



Coordination game

So player 1 should play l if and only if:
t1 > x/c2 - 3

Similarly:
Player 2 should play R if and only if:

t2 > x/c1 - 3



Coordination game

So player 1 should play l if and only if:
t1 > x/c2 - 3

Similarly:
Player 2 should play R if and only if:

t2 > x/c1 - 3
The right hand sides must be the 

thresholds!



Coordination game: equilibrium

Solve: c1 = x/c2 - 3, c2 = x/c1 - 3
Solution:

Thus one Bayesian equilibrium
is to play strategies s1(·), s2(·),
with thresholds c1, c2 (respectively).

ci =

√
9+ 4x− 3

2



Coordination game: equilibrium

What is the unconditional probability
that player 1 plays r ?
= c1/x → 1/3 as x → 0

Thus as x → 0, the unconditional 
distribution of play matches the
mixed strategy NE of the
complete information game.



Purification

This phenomenon is one example of 
purification:
recovering a mixed strategy NE via
Bayesian equilibrium of a perturbed game.

Harsanyi showed mixed strategy NE can 
“almost always” be purified in this way.



Summary

To find Bayesian equilibria,
provide strategies s1(·), …, sN(·) where:

For each type θi, player i chooses si(θi) to 
maximize expected payoff given
his belief P( θ-i | θi).



MS&E 246: Lecture 13
Auctions: Imperfect information

Ramesh Johari



Auctions: Theory

• Basic definitions
• Revelation principle
• Truthtelling lemma
• Payoff equivalence theorem
• Revenue equivalence theorem
• Symmetric BNE
• Examples next lecture



A basic auction model

• Assume two players want the same item

• Type of player i : valuation vi ≥ 0
Assume: P(vi ≤ xi) = Φi(xi) 
Fi : continuous dist. on [0,V ], with pdf φi

e.g. uniform: φi(xi) = 1/V, for xi ∈ [0,V ]



A basic auction model

Payoffs depend on winning and payment
• Let w = i if player i wins
• Let pi = payment of player i
• Payoff to player i of type vi:



A basic auction model

An auction mechanism is:
• action set for each player, Bi

• mapping from actions to:
winner: w(b1, b2) ∈ { 1, 2 }
payments: pi(b1, b2) ∈ [0, ∞),   i = 1, 2

Payoff to i: Qi(b1, b2 ; vi) =
Πi(w(b), pi(b) ; vi)



Example: Second price auction

• Action space (bids):  Bi = [0, ∞),  i = 1, 2

• Winner: w(b1, b2) = 1 if b1 > b2;
= 2 if b1 ≤ b2

• Payments: pi(b1, b2) = b-i if w(b1, b2) = i;
= 0  otherwise



Bayes‐Nash equilibrium

Strategy of i : si : [0,∞) → Bi

s1 is a Bayesian best response to s2 if:

for all b1 ∈ B1 , and v1 ≥ 0

(similar definition for player 2)



Bayes‐Nash equilibrium

Strategy of i : si : [0,∞) → Bi

s1 is a Bayesian best response to s2 if:

for all b1 ∈ B1 , and v1 ≥ 0

(Similarly for player 2)



Bayes‐Nash equilibrium

(s1, s2) is a BNE if:

• s1 is a Bayesian best response to s2

• s2 is a Bayesian best response to s1



Second price auction and BNE

We start by finding a BNE for the
second price auction.

Recall: Given type vi, truthtelling
is a weak dominant action for i:

di(vi) = vi



Dominant actions and BNE

Consider any Bayesian game with type 
spaces T1, T2.

Suppose for each type ti, player i has a 
(weakly) dominant action di(ti):

Qi(di(ti), a-i ; ti) ≥ Qi(ai, a-i ; ti) 
for any other action ai



Dominant actions and BNE

Then (d1(·), d2(·)) is a BNE.

We know that for each player i:
Qi(di(ti), d-i(t-i) ; ti)

≥ Qi(ai, d-i(t-i) ; ti)
for all types ti, t-i, and actions ai.



Dominant actions and BNE

Then (d1(·), d2(·)) is a BNE.

Take expectations:
E[ Qi(di(ti), d-i(t-i) ; ti) | ti ]

≥ E[ Qi(ai, d-i(t-i) ; ti) | ti ]
for all types ti, and actions ai.

This is exactly the condition for a BNE.



Second price auction and BNE

Conclusion:
In the second price auction,
truthtelling is a BNE :
si(vi) = di(vi) = vi

(Note that this requires a dominant action 
for every possible type!)



Incentive compatibility

Auctions where truthtelling is a BNE,
i.e., where:

1. Bi = [0, ∞) for i = 1, 2, and
2. si(vi) = vi for i = 1, 2 is a BNE

are called incentive compatible.



Revelation principle

The revelation principle shows how to
create an incentive compatible auction
from any auction with a BNE.



The revelation principle

Given: B1, B2, w(·), p1(·), p2(·)
and a BNE s1(·), s2(·)

Create a new auction with:
B1 = B2 = [0, ∞)
w(b1, b2) = w(s1(b1), s2(b2))
pi(b1, b2) = pi(s1(b1), s2(b2)),   i = 1, 2



The revelation principle

s1(v1)v1

v2 s2(v2)

w
p1
p2

At the BNE of the original auction:



The revelation principle

v1

v2

w
p1
p2

In the new auction:
Ask players to declare valuation. 

b1

b2

s1(b1)

s2(b2)



The revelation principle

Theorem: 
The new auction is incentive compatible.

Further, the truthtelling strategies
in the new auction give exactly
the same outcomes as
the BNE of the original auction.



The revelation principle: Proof

For all v1,

E[ Q1(v1, v2 ; v1) | v1 ]

= E[ Q1(s1(v1), s2(v2) ; v1) | v1 ]

≥ E[ Q1(b1, s2(v2) ; v1) | v1 ]
for all b1 ∈ B1



The revelation principle: Proof

For all v1,

E[ Q1(v1, v2 ; v1) | v1 ]

= E[ Q1(s1(v1), s2(v2) ; v1) | v1 ]

≥ E[ Q1(s1(b1), s2(v2) ; v1) | v1 ]
for all b1 ∈ [0, ∞)



The revelation principle: Proof

For all v1,

E[ Q1(v1, v2 ; v1) | v1 ]

= E[ Q1(s1(v1), s2(v2) ; v1) | v1 ]

≥ E[ Q1(b1, v2 ; v1) | v1 ]
for all b1 ∈ [0, ∞)

(Similarly for player 2)



The revelation principle: Proof

Given v1, v2 :
Outcome at truthtelling strategies
= (w(v1, v2), p1 (v1, v2), p2(v1, v2) )
= ( w(s1(v1), s2(v2)),

p1 (s1(v1), s2(v2)), 
p2(s1(v1), s2(v2)) )

= outcome at original BNE



The revelation principle

The new auction is called a
direct revelation mechanism (DRM).

Note:
It may have other, undesirable 
equilibria!!



Two useful results

For a wide range of auctions
(including first and second price),
we will show
payoff equivalence and
revenue equivalence:

These auctions all have the same payoffs 
and auctioneer revenue at BNE.



Definitions

Suppose we are given a DRM.

Truthtelling expected payoff to player 1:

S1(v1) = E[ Q1( v1, v2 ; v1) | v
1

]

Truthtelling expected probability
of winning for player 1:

P1(v1) = ∫0∞ I{ w(v1, v2) = 1} φ2(v2) dv2



The truthtelling lemma

Lemma: Truthtelling is a BNE
if and only if for i = 1, 2:

(1) Si(vi) = Si(0) + ∫0
vi Pi(z) dz

(2) Pi is nondecreasing:
vi ≥ vi’ ⇒ Pi(vi) ≥ Pi(vi’)



The truthtelling lemma: Proof

Truthtelling is a BNE if and only if:
S1(v1) ≥ E[ Q1 ( v1’, v2 ; v1) | v1 ]

for all v1’ ≥ 0
(Similarly for player 2)



The truthtelling lemma: Proof

Truthtelling is a BNE if and only if:
S1(v1) ≥ E[ Q1 ( v1’, v2 ; v1) | v1 ]

for all v1’ ≥ 0

E[ Q1 ( v1’, v2 ; v1) | v1 ] =

∫0
∞ [v1 - p1(v1’, v2)] I{ w(v1’, v2) = 1} φ2(v2) dv2



The truthtelling lemma: Proof

Truthtelling is a BNE if and only if:
S1(v1) ≥ E[ Q1 ( v1’, v2 ; v1) | v1 ]

for all v1’ ≥ 0

E[ Q1 ( v1’, v2 ; v1) | v1 ] =

∫0
∞ [v1 - p1(v1’, v2)] I{ w(v1’, v2) = 1} φ2(v2) dv2



The truthtelling lemma: Proof

Truthtelling is a BNE if and only if:
S1(v1) ≥ E[ Q1 ( v1’, v2 ; v1) | v1 ]

for all v1’ ≥ 0

E[ Q1 ( v1’, v2 ; v1) | v1 ] =

v1 P1 (v1’) -
∫0
∞ [p1(v1’, v2)] I{ w(v1’, v2) = 1} φ2(v2) dv2



The truthtelling lemma: Proof

Truthtelling is a BNE if and only if:
S1(v1) ≥ E[ Q1 ( v1’, v2 ; v1) | v1 ]

for all v1’ ≥ 0

E[ Q1 ( v1’, v2 ; v1) | v1 ] =

v1 P1 (v1’) - v1’ P1 (v1’)
∫0
∞ [v1’- p1(v1’, v2)] I{ w(v1’, v2) = 1} φ2(v2) dv2



The truthtelling lemma: Proof

Truthtelling is a BNE if and only if:
S1(v1) ≥ E[ Q1 ( v1’, v2 ; v1) | v1 ]

for all v1’ ≥ 0

E[ Q1 ( v1’, v2 ; v1) | v1 ] =

v1 P1 (v1’) - v1’ P1 (v1’) + S1 (v1’)



The truthtelling lemma: Proof

Conclude:

Truthtelling is a BNE if and only if
for i = 1, 2, and for all vi , vi’ ≥ 0:

Si (vi) ≥ Si (vi’) + Pi (vi’)(vi - vi’)

i.e., Si is convex.



The truthtelling lemma: Proof

Assume vi’ > vi. Then:

Si (vi) ≥ Si (vi’) + Pi (vi’)(vi - vi’)

Si (vi’) ≥ Si (vi) + Pi (vi)(vi’ - vi)

⇒ Pi (vi)(vi’ - vi) ≤ Pi (vi’)(vi’ - vi)

So Pi(vi) ≤ Pi(vi’) ⇒ Pi is nondecreasing



The truthtelling lemma: Proof

If vi > vi’ :

If vi < vi’ :

Take vi’ ↑ vi, vi’ ↓ vi     ⇒   Si’(vi) = Pi(vi)



The truthtelling lemma

How to use the truthtelling lemma:

(1) Use a BNE of an auction
to create an incentive compatible DRM

(2) Apply the truthtelling lemma
to characterize the original BNE



Payoff equivalence

Given two auctions with BNE such that:
-in each BNE, if vi = 0 then

player i gets zero payoff; and
-in each BNE, item always goes to

highest valuation player

Theorem: Both BNE yield the same 
expected payoff to each player.



Payoff equivalence: Proof

• Fix given BNE (s1, s2) of one of the 
auctions

• Construct incentive compatible DRM
using revelation principle

• For this DRM:
Si(0) = 0, and
Pi(vi) = ∫0

vi φ-i(v-i)  dv-i



Payoff equivalence: Proof

Expected payoff to player 1 of type v1:

depends only on S1(0) and P1(·),

by the truthtelling lemma

(Similarly for player 2)



Payoff equivalence: Proof

Expected payoff to player 1 of type v1:

E[ Q1(s1(v1), s2(v2) ; v1) | v1 ]

= E[ Q1 ( v1, v2 ; v1) | v1 ]

= S1 (v1) = ∫0
v1 [ ∫0

v1’ φ2(v2)  dv2 ] dv1’

by the truthtelling lemma

(Similarly for player 2)



Payoff equivalence: Proof

So at given BNE of either auction,
expected payoff to player 1 of type v1 is:

∫0
v1 [ ∫0

v1’ φ2(v2)  dv2 ] dv1’

This does not depend on the BNE!

(Similarly for player 2)



Revenue equivalence

Given two auctions with BNE such that:
-in each BNE, if vi = 0 then

player i gets zero payoff; and
-in each BNE, item always goes to

highest valuation player

Theorem: Both BNE yield the same 
expected revenue to the auctioneer.



Revenue equivalence: Proof

Fix BNE (s1, s2) of one of the auctions
Note:

∑2
i = 1 Qi (s1(v1), s2(v2) ; vi)

= vw(s1(v1), s2(v2)) - pw(s1(v1), s2(v2))



Revenue equivalence: Proof

Taking expectations:

Sum of expected payoffs to players

= E [ max {v1, v2} ]  -
Expected revenue to auctioneer



Revenue equivalence: Proof

Taking expected values:

Expected revenue to auctioneer

= E[ max {v1, v2} ]  -
Sum of expected payoffs to players



Revenue equivalence: Proof

Taking expected values:

Expected revenue to auctioneer

= E[ max {v1, v2} ]  -
Sum of expected payoffs to players

Right hand side is same for BNE of both 
auctions (by payoff equivalence)



Revenue equivalence

Note that at BNE,
expected payoffs to players are ≥ 0.

So:
Revenue to auctioneer  ≤ E[ max {v1, v2} ]



[ Aside: optimal auction theory ]

The problem of maximizing the
equilibrium revenue to the auctioneer
is called optimal auction design.

For this problem to be well-defined,
an additional constraint is needed,
individual rationality:

E[ Qi(si(vi), s-i(v-i) ; vi) | vi ] ≥ 0 for all i.
(Otherwise bidder i would not participate.)



[ Aside: optimal auction theory ]

The framework defined here can be used
to characterize the optimal auction design
for any distribution of players’ valuations.

(See Myerson 1979)



Symmetric BNE

From now on, assume:
• B1 = B2 = [0, ∞)
• φ1 = φ2 = φ (same distribution)

(Assume φ is positive on its entire domain)

A BNE is symmetric if:
s1(v) = s2(v) for all v ≥ 0
s(v) = si(v) is called the bid function.



Symmetric BNE theorem

Theorem:
If highest bidder wins,
then in a symmetric BNE with
bid function s,
s is strictly increasing,
so the winning bidder also has
the highest valuation.

(In case of tie, assume player 2 wins)



Symmetric BNE: Proof

Apply revelation principle to build
new incentive compatible auction:
w(b1, b2) = w(s(b1), s(b2))
pi(b1, b2) = pi(s(b1), s(b2)),   i = 1, 2

In this auction:
P1(v1) = ∫0∞ I{ w(v1, v2) = 1} φ(v2) dv2



Symmetric BNE: Proof

Apply revelation principle to build
new incentive compatible auction:
w(b1, b2) = w(s(b1), s(b2))
pi(b1, b2) = pi(s(b1), s(b2)),   i = 1, 2

In this auction:
P1(v1) = ∫0∞ I{ w( s(v1), s(v2) ) = 1} φ(v2) dv2



Symmetric BNE: Proof

Apply revelation principle to build
new incentive compatible auction:
w(b1, b2) = w(s(b1), s(b2))
pi(b1, b2) = pi(s(b1), s(b2)),   i = 1, 2

In this auction:
P1(v1) = ∫0∞ I{ s(v1) > s(v2) } φ(v2) dv2



Symmetric BNE: Proof

By truthtelling lemma,

∫0
∞ I{ s(v1) > s(v2) } φ(v2) dv2

is nondecreasing in v1. 

Only possible if s(v) is nondecreasing in v.
We only need to show s is strictly increasing.



Symmetric BNE: Proof

We will show s is strictly increasing
in the special case of the
first price auction:
pi(b1, b2) = bi if w(b1, b2) = i;

= 0  otherwise

However, the result holds more generally
for the other auctions we consider.



Symmetric BNE: Proof

Suppose s is not strictly increasing:

v

s(v)



Symmetric BNE: Proof

Suppose s is not strictly increasing:

v

s(v)

a b



Symmetric BNE: Proof

Suppose s is not strictly increasing.
Fix a < b such that:

s(v) = s(a), a ≤ v ≤ b

We can assume: a > s(a).
(If not, just increase a slightly.)



Symmetric BNE: Proof

Given player 2 is using s2 = s,
suppose player 1 bids

b1 = s(a) + ε when v1 = a.
Then when v1 = a: 

- Expected payment by player 1
increases by at most ε

- Player 1 wins if v2 ∈ [a,b]



Symmetric BNE: Proof

Given player 2 is using s2 = s,
suppose player 1 bids

b1 = s(a) + ε when v1 = a.

Player 1’s change in expected payoff
≥ (a - s(a) - ε)(F(b) - F(a))  - ε

> 0 for small enough ε
Profitable deviation!



Symmetric BNE: Proof

Conclude:
s is strictly increasing

So:
Winner must have highest valuation



Symmetric BNE

In general, can show the same result if:
(1) pi(b1, b2) ≥ 0 for all b1, b2;
(2) the winner’s payment is positive when 
at least one of b1, b2 is positive; and
(3) p1(b1, b2) = p2(b2, b1) for all b1, b2

(permutation invariance)



Moral

Symmetric BNE of “standard auctions”
(first price, second price, etc.)
have the same expected payoffs and 
auctioneer revenue.

In particular,
Expected revenue = E[ second highest bid ]

(Why?)
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Example: Second price auction

• Action space (bids):  Bi = [0, ∞),  i = 1, 2

• Winner: w(b1, b2) = 1 if b1 > b2;
= 2 if b1 ≤ b2

• Payments: pi(b1, b2) = b-i if w(b1, b2) = i;
= 0  otherwise

• Assume: φ1 = φ2 = φ, continuous,
positive everywhere on its domain,
with distribution F



Example: Second price auction

Since di(vi) = vi is a 
dominant action for each player,

si(vi) = vi for i = 1, 2 is a BNE.
It is a symmetric and truthtelling BNE.

So the second price auction is
incentive compatible.



Example: Second price auction

The truthtelling lemma tells us:
S1(v1) = S1 (0) + ∫0

v1 P1 (z) dz

But: S1(0) = 0
P1(v1) = P(v1 > v2 | v1) = ∫0

v1 φ(v2) dv2

So S1(v1) =  ∫0
v1 [ ∫0

z φ(v2)  dv2 ] dz

(Similarly for player 2)



Example: Second price auction

The truthtelling lemma tells us:
S1(v1) = S1 (0) + ∫0

v1 P1 (z) dz

But: S1(0) = 0
P1(v1) = P (v1 > v2 | v1) = ∫0

v1 φ(v2) dv2

So S1(v1) =  ∫0
v1 F(z) dz

(Similarly for player 2)



Example: Second price auction

Expected payoff to player 1, given type v1

= S1(v1) =  ∫0
v1 F(z) dz

(Similarly for player 2)



Example: Second price auction

Are there any other symmetric BNE
of the second price auction?

Suppose s1 = s2 = s is such a BNE.



Example: Second price auction

By symmetric BNE theorem,
s is strictly increasing, and
player 1 wins if and only if v1 > v2

Expected payoff to player 1 of type v1:
S1(v1) = ∫0

v1 (v1 - s(v2)) φ(v2) dv2



Example: Second price auction

Observe that:
• Si(0) = 0   for i = 1, 2
• Highest valuation player always wins

So by payoff equivalence theorem:

S1(v1) = S1(v1)



Example: Second price auction

By payoff equivalence:

S1(v1) = S1(v1)



Example: Second price auction

By payoff equivalence:

∫0
v1 F(z) dz =  ∫0

v1 (v1 - s(v2)) φ(v2) dv2



Example: Second price auction

By payoff equivalence:

∫0
v1 F(z) dz = v1F(v1) - ∫0

v1 s(v2)) φ(v2) dv2

Differentiate:

F(v1)  =  F(v1) + v1 φ(v1) - s(v1) φ(v1)



Example: Second price auction

By payoff equivalence:

∫0
v1 F(z) dz = v1F(v1) - ∫0

v1 s(v2)) φ(v2) dv2

Differentiate:

0 = v1 φ(v1) - s(v1) φ(v1)



Example: Second price auction

By payoff equivalence:

∫0
v1 F(z) dz = v1F(v1) - ∫0

v1 s(v2)) φ(v2) dv2

Differentiate:

0 = ( v1 - s(v1) ) φ(v1)

So: v1 = s(v1)



Example: Second price auction

Conclude: truthtelling is unique symmetric 
BNE.

Expected revenue to auctioneer:
E[ second highest valuation ]



Example: First price auction

• Action space (bids):  Bi = [0, ∞),  i = 1, 2

• Winner: w(b1, b2) = 1 if b1 > b2;
= 2 if b1 ≤ b2

• Payments: pi(b1, b2) = bi if w(b1, b2) = i;
= 0  otherwise

• Assume: φ1 = φ2 = φ, continuous,
positive everywhere on its domain,
with distribution F



Example: First price auction

What are the symmetric BNE of the first 
price auction?

Suppose s1 = s2 = s is a symmetric BNE.



Example: First price auction

By symmetric BNE theorem,
s is strictly increasing, and
player 1 wins if and only if v1 > v2

Expected payoff to player 1 of type v1:
S1

FP(v1) = ∫0
v1 (v1 - s(v1)) φ(v2) dv2

= (v1 - s(v1)) F(v1)



Example: First price auction

Observe that:
• Si(0) = 0   for i = 1, 2
• Highest valuation player always wins

So by payoff equivalence theorem, 
S1

FP(v1) = expected payoff to type v1
player in second price auction



Example: First price auction

By payoff equivalence:
S1

FP(v1)  =  ∫0
v1 F(z) dz



Example: First price auction

By payoff equivalence:
(v1 - s(v1)) F(v1) =  ∫0

v1 F(z) dz

So:

(e.g., when Φ is uniform: s(v) = v/2)

Φ
Φ



Example: First price auction

Observe that s(v) < v.
This practice is called bid shading.

Φ
Φ



Example: First price auction

Revenue equivalence also holds, so:

Expected revenue to auctioneer = 
expected revenue under
second price auction =
E[ second highest valuation ]
< E[ max{ v1, v2 } ]



Revenue

The shortfall between E[ max{v1, v2} ] and 
expected revenue is called an
information rent:

At an equilibrium the buyers must make a 
profit if they reveal their private 
valuation.



Revenue

However, this relies on
independent private valuations.

If valuations are correlated, the auctioneer
can get expected revenue = E[ max{v1, v2} ]

See Problem Set 6.
(Theorem: Cremer and McLean, 1985)
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Dynamic games

In this lecture, we begin a study of 
dynamic games of
incomplete information.

We will develop an analog of Bayesian 
equilibrium for this setting, called
perfect Bayesian equilibrium.



Why do we need beliefs?

Recall in our study of subgame perfection 
that problems can occur if there are “not 
enough subgames” to rule out equilibria.



Entry example

(3,0)

2.1

RL RL

(-1,-1) (-1,-1) (2,1)

1.1

ExitEntry1

Entry2

• Two firms
• First firm decides if/how to enter
• Second firm can choose to “fight”

(0,2)



Entry example

Note that this game only has one subgame.
Thus SPNE are any NE of strategic form.

(2,1)(-1,-1)Entry2

Exit

Entry1

(0,2)(0,2)

(3,0)(-1,-1)

RL

Firm 2

Firm 1



Entry example

Two pure NE of strategic form:
(Entry1, R) and (Exit, L)

(2,1)(-1,-1)Entry2

Exit

Entry1

(0,2)(0,2)

(3,0)(-1,-1)

RL

Firm 2

Firm 1



Entry example

(3,0)

2.1

RL RL

(-1,-1) (-1,-1) (2,1)

1.1

ExitEntry1

Entry2

But firm 1 should “know” that if
it chooses to enter,
firm 2 will never “fight.”

(0,2)



Entry example

(3,0)

2.1

RL RL

(-1,-1) (-1,-1) (2,1)

1.1

ExitEntry1

Entry2

So in this situation,
there are too many SPNE.

(0,2)



Beliefs

A solution to the problem of the entry 
game is to include beliefs as part of the
solution concept:
Firm 2 should never fight, regardless of 
what it believes firm 1 played.



Beliefs

In general, the beliefs of player i are:
a conditional distribution over
everything player i does not know,
given everything that player i does know.



Beliefs

In general, the beliefs of player i are:
a conditional distribution over
the nodes of the information set i is in,
given player i is at that information set.

(When player i is in information set h,
denoted by Pi(v | h), for v ∈ h)



Beliefs

One example of beliefs:
In static Bayesian games, player i’s belief
is P(θ-i | θi) (where θj is type of player j).

But types and information sets are in
1-to-1 correspondence in Bayesian games,
so this matches the new definition.



Perfect Bayesian equilibrium

Perfect Bayesian equilibrium (PBE)
strengthens subgame perfection by 
requiring two elements:

- a complete strategy for each player i
(mapping from info. sets to mixed actions)

- beliefs for each player i
(Pi(v | h) for all information sets h

of player i)



Entry example

In our entry example, firm 1 has only one 
information set, containing one node.

His belief just puts probability 1 on this 
node.

(3,0)

2.1

RL RL

(-1,-1) (-1,-1) (2,1)

1.1

ExitEntry1

Entry2

(0,2)
A B



Entry example

Suppose firm 1 plays a mixed action with 
probabilities (pEntry1

, pEntry2
, pExit),

with pExit < 1.

(3,0)

2.1

RL RL

(-1,-1) (-1,-1) (2,1)

1.1

ExitEntry1

Entry2

(0,2)
A B



Entry example

What are firm 2’s beliefs in 2.1?
Computed using Bayes’ Rule!

(3,0)

2.1

RL RL

(-1,-1) (-1,-1) (2,1)

1.1

ExitEntry1

Entry2

(0,2)
A B



Entry example

What are firm 2’s beliefs in 2.1?
P2(A | 2.1) = pEntry1 

/(pEntry1
+ pEntry2

)

(3,0)

2.1

RL RL

(-1,-1) (-1,-1) (2,1)

1.1

ExitEntry1

Entry2

(0,2)
A B



Entry example

What are firm 2’s beliefs in 2.1?
P2(B | 2.1) = pEntry2 

/(pEntry1
+ pEntry2

)

(3,0)

2.1

RL RL

(-1,-1) (-1,-1) (2,1)

1.1

ExitEntry1

Entry2

(0,2)
A B



Beliefs

In a perfect Bayesian equilibrium,
“wherever possible”,
beliefs must be computed
using Bayes’ rule and
the strategies of the players.

(At the very least, this ensures information sets that can be reached 
with positive probability have beliefs assigned using Bayes’ rule.)



Rationality

How do player’s choose strategies?
As always, they do so to

maximize payoff.
Formally:

Player i’s strategy si(·) is such that
in any information set h of player i, 
si(h) maximizes player i’s expected payoff,
given his beliefs and others’ strategies.



Entry example

For any beliefs player 2 has in 2.1,
he maximizes expected payoff by playing R.

(3,0)

2.1

RL RL

(-1,-1) (-1,-1) (2,1)

1.1

ExitEntry1

Entry2

(0,2)
A B



Entry example

Thus, in any PBE, player 2 must play R in 2.1.

(3,0)

2.1

RL RL

(-1,-1) (-1,-1) (2,1)

1.1

ExitEntry1

Entry2

(0,2)
A B



Entry example

Thus, in any PBE, player 2 must play R in 2.1.

(3,0) (2,1)

1.1

ExitEntry1

Entry2

(0,2)
A B



Entry example

So in a PBE, player 1 will play Entry1 in 1.1.

(3,0) (2,1)

1.1

ExitEntry1

Entry2

(0,2)
A B



Entry example

Conclusion: unique PBE is (Entry_1, R).
We have eliminated the NE (Exit, L).



PBE vs. SPNE

Note that a PBE is equivalent to SPNE
for dynamic games of complete and 
perfect information:

All information sets are singletons,
so beliefs are trivial.

In general, PBE is stronger than SPNE
for dynamic games of complete and
imperfect information.



Summary

• Beliefs: conditional distribution at
every information set of a player

• Perfect Bayesian equilibrium:
1. Beliefs computed using Bayes’ rule 

and strategies (when possible)
2. Actions maximize expected payoff,

given beliefs and strategies



An ante game

• Let t1, t2 be uniform[0,1], independent.
• Player i observes ti;

each player puts $1 in the pot.
• Player 1 can force a “showdown”,

or player 1 can “raise” (and add $1 to the pot).
• In case of a showdown, both players show ti;

the highest ti wins the entire pot.
• In case of a raise, Player 2 can “fold” (so player 1 

wins) or “match” (and add $1 to the pot).
• If Player 2 matches, there is a showdown.



An ante game

To find the perfect Bayesian equilibria
of this game:

Must provide strategies s1(·), s2(·); and 
beliefs P1(· | ·), P2(· | ·).



An ante game

Information sets of player 1:
t1 : His type.

Information sets of player 2:
(t2, a1) : type t2,

and action a1 played by player 1.



An ante game

Represent the beliefs by densities.
Beliefs of player 1:
p1(t2 | t1) = t2 (as types are independent)
Beliefs of player 2:
p2(t1 | t2, a1) = density of player 1’s type, 

conditional on having played a1
= p2(t1 | a1) (as types are indep.)



An ante game

Using this representation,
can you find a perfect Bayesian 
equilibrium of the game?
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Signaling games

Signaling games are two-stage games 
where:

• Player 1 (with private information)
moves first.
His move is observed by Player 2.

• Player 2 (with no knowledge of Player 1’s 
private information) moves second.

• Then payoffs are realized.



Dynamic games

Signaling games are a key example of 
dynamic games of
incomplete information.

(i.e., a dynamic game where the entire 
structure is not common knowledge)



Signaling games

The formal description:
Stage 0:

Nature chooses a random variable t1,
observable only to Player 1,
from a distribution P(t1).



Signaling games

The formal description:
Stage 1:

Player 1 chooses an action
a1 from the set A1.

Player 2 observes this choice of action.
(The action of Player 1 is also called a 
“message.”)



Signaling games

The formal description:
Stage 2:

Player 2 chooses an action
a2 from the set A2.

Following Stage 2, payoffs are realized:
Π1(a1, a2 ; t1) ;  Π2(a1, a2 ; t1).



Signaling games

Observations:
• The modeling approach follows Harsanyi’s

method for static Bayesian games.
• Note that Player 2’s payoff depends

on the type of player 1!
• When Player 2 moves first,

and Player 1 moves second,
it is called a screening game.



Application 1: Labor markets

A key application due to Spence (1973):
Player 1: worker

t1 : intrinsic ability
a1 : education decision

Player 2: firm(s)
a2 : wage offered

Payoffs: Π1 = net benefit
Π2 = productivity



Application 2: Online auctions

Player 1: seller
t1 : true quality of the good
a1 : advertised quality

Player 2: buyer(s)
a2 : bid offered

Payoffs: Π1 = profit
Π2 = net benefit



Application 3: Contracting

A model of Cachon and Lariviere (2001):
Player 1: manufacturer

t1 : demand forecast
a1 : declared demand forecast,

contract offer
Player 2: supplier

a2 : capacity built
Payoffs: Π1 = profit of manufacturer

Π2 = profit of supplier



A simple signaling game

Suppose there are two types for Player 1,
and two actions for each player:

• t1 = H or t1 = L
Let p = P(t1 = H)

• A1 = { a, b }
• A2 = { A, B }



A simple signaling game

Nature moves first:

Nature



A simple signaling game

Nature moves first:

Nature

H

L



A simple signaling game

Player 1 moves second:

Nature

1.1

1.2

H

L



A simple signaling game

Player 1 moves second:

Nature

1.1

1.2

H

L

a

a b

b



A simple signaling game

Player 2 observes Player 1’s action:

Nature

1.1

1.2

H

L

a

a b

b

2.22.1



A simple signaling game

Player 2 moves:

Nature

1.1

1.2

H

L

a

a b

b

2.22.1

A

B

A

B

A

B

A

B



A simple signaling game

Payoffs are realized: Πi(a1, a2; t1)

Nature

1.1

1.2

H

L

a

a b

b

2.22.1

A

B

A

B

A

B

A

B



Perfect Bayesian equilibrium

Each player has 2 information sets,
and 2 actions in each, so 4 strategies.

A PBE is a pair of strategies and beliefs
such that:
-each players’ beliefs are derived from 
strategies using Bayes’ rule (if possible)
-each players’ strategies maximize 
expected payoff given beliefs



Pooling vs. separating equilibria

When player 1 plays the same action,
regardless of his type,
it is called a pooling strategy.

When player 1 plays different actions,
depending on his type,
it is called a separating strategy.



Pooling vs. separating equilibria

In a pooling equilibrium,
Player 2 gains no information about t1
from Player 1’s message
⇒ P2(t1 = H | a1) = P(t1 = H) = p

In a separating equilibrium,
Player 2 knows Player 1’s type exactly
from Player 1’s message
⇒ P2(t1 = H | a1) = 0 or 1



An eBay‐like model

Suppose seller has an item with quality 
either H (prob. p) or L (prob. 1 - p).

Seller can advertise either H or L.
Assume there are two bidders.
Suppose that bidders always bid truthfully,

given their beliefs.
(This would be the case if the seller used 
a second price auction.)



An eBay‐like model

Suppose seller always advertises high.
Then: buyers will never “trust” the seller,

and always bid expected valuation.
This is the pooling equilibrium:

s1(H) = s1(L) = H.
sB(H) = sB(L) = p H + (1 - p) L.



An eBay‐like model

Is there any equilibrium where s1(t1) = t1?  
(In this case the seller is truthful.)
In this case the buyers bid:

sB(H) = H, sB(L) = L.
But if the buyers use this strategy,

the seller prefers to always advertise H!



An eBay‐like model

Now suppose that if the seller lies when 
the true value is L,
there is a cost c (in the form of lower 
reputation in future transactions).

If H - c < L,
then the seller prefers to tell the truth
⇒ separating equilibrium.



An eBay‐like model

This example highlights the importance of
signaling costs:
To achieve a separating equilibrium, 
there must be a difference in the costs
of different messages.

(When there is no cost, the resulting 
message is called “cheap talk.”)


	lecture1.pdf
	lecture2.pdf
	lecture3.pdf
	lecture4.pdf
	lecture5.pdf
	lecture6.pdf
	lecture7.pdf
	lecture8.pdf
	lecture9.pdf
	lecture10.pdf
	lecture11.pdf
	lecture12.pdf
	lecture13.pdf
	lecture14.pdf
	lecture15.pdf
	lecture16.pdf

